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Abstract

Background: Comparative network analysis aims to identify common subnetworks in biological networks. It can
facilitate the prediction of conserved functional modules across different species and provide deep insights into
their underlying regulatory mechanisms. Recently, it has been shown that hidden Markov models (HMMs) can
provide a flexible and computationally efficient framework for modeling and comparing biological networks.

Results: In this work, we show that using global correspondence scores between molecules can improve the
accuracy of the HMM-based network alignment results. The global correspondence scores are computed by
performing a semi-Markov random walk on the networks to be compared. The resulting score naturally integrates
the sequence similarity between molecules and the topological similarity between their molecular interactions,
thereby providing a more effective measure for estimating the functional similarity between molecules. By
incorporating the global correspondence scores, instead of relying on sequence similarity or functional annotation
scores used by previous approaches, our HMM-based network alignment method can identify conserved
subnetworks that are functionally more coherent.

Conclusions: Performance analysis based on synthetic and microbial networks demonstrates that the proposed
network alignment strategy significantly improves the robustness and specificity of the predicted alignment results,
in terms of conserved functional similarity measured based on KEGG ortholog (KO) groups. These results clearly
show that the HMM-based network alignment framework using global correspondence scores can effectively find
conserved biological pathways and has the potential to be used for automatic functional annotation of
biomolecules.

Background
With the increasingly high coverage of molecular inter-
actions owing to the advancement of high-throughput
techniques for measuring biomolecular interactions,
such as the two-hybrid screening [1] and co-immuno-
precipitation [2], comparative analysis of biological net-
works has recently attracted significant research
attention. It has been demonstrated that comparative

network analysis can provide an effective means of sys-
tematically studying molecular interactions in various
organisms and gaining novel system-level insights
[3-18]. For example, local network alignment across dif-
ferent species can identify similar subnetwork regions in
the respective networks, which may lead to the discov-
ery of conserved pathways that carry out essential cellu-
lar functionalities [3,5,6,9,11,15,16,19]. The concept of
comparative network analysis can lead to the develop-
ment of novel computational tools that allow us to
transfer biological knowledge across species, especially
from well-studied species to less-studied species [19].
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Current local network algorithms [3,5,6,9,15] search
for similar subnetwork regions by optimizing a pre-
defined alignment score that incorporates the topological
similarity of the interaction patterns in the compared
networks as well as the node similarity of the molecules
that belong to different networks, typically measured
based on sequence similarity. To obtain better alignment
results that are biologically more significant, there have
been research efforts to improve the scoring scheme by
incorporating evolutionary [4] or functional relationships
[11,16] between molecules. Although there are various
approaches for measuring the similarity between net-
work nodes, most of the existing approaches compute
this similarity based on the properties of individual
nodes, such as their composition, functionality, or evolu-
tionary relationships. However, cellular functions are
carried out by collaborative efforts among many mole-
cules, where interacting molecules may carry similar
functionalities and share common characteristics. There-
fore it would be reasonable to expect that, when evalu-
ating the node similarity, incorporating additional
information about the interacting molecules would
enhance the network alignment results and lead to pre-
dictions that are biologically more meaningful.
Recently, we have introduced an effective framework

for local network alignment based on hidden Markov
models (HMMs), in which we integrate both the node
sequence similarity and the interaction reliability into
the scoring scheme by determining the parameters of
the HMMs correspondingly [15]. We also developed an
efficient dynamic programming algorithm that can find
the closest pair of pathways from the respective net-
works in polynomial time. The HMM-based local align-
ment method can deal with a large class of path
isomorphism and it allows one to search for long con-
served pathways across large-scale networks. In this
paper, we implement a semi-Markov random walk fra-
mework that diffuses the relationships of all the mole-
cule pairs across the networks to obtain a global
correspondence score between every pair of nodes. The
resulting global correspondence score reflects the global
similarity between nodes in different networks, by seam-
lessly integrating the topological similarity and indivi-
dual node similarity. Alignment results based on
synthetic networks and microbial protein-protein inter-
action (PPI) networks show that the performance of the
HMM-based local alignment scheme can be significantly
improved by utilizing the global correspondence score
instead of the original individual sequence similarity
score. The major contributions of this paper include the
following: first, we integrate the global node correspon-
dence scoring scheme into the HMM-based local net-
work alignment framework [15], which leads to more
accurate and robust alignment results; second, we

thoroughly evaluate the performance of the proposed
scheme based on synthetic benchmark networks, as well
as real microbial networks, which clearly demonstrates
the advantages of utilizing global correspondence scores,
especially, in combination with the HMM-based
framework.

Methods
Local network alignment based on hidden Markov
models
In this section, we briefly review our local network
alignment algorithm based on hidden Markov models
(HMMs) [14,15]. We focus on aligning two biological
networks to identify the common pathways that are
conserved in both networks. Suppose we have two bio-
logical networks, represented as two graphs
  1 = ( , ) and   2 = ( , ) . In graph
 1 1 2 1

, , , ,= { }u u uN of N1 nodes represents the
corresponding molecules, and  = ( )dij of M1 edges
indicates the presence of interactions dij between the
two molecules ui and uj. Similarly, we assume that  2
has a set  = { }v v vN1 2 2

, , , of N2 nodes and a set
 = { }eij of M2 edges. We denote the interaction relia-
bility score between ui and uj in 1 as w1(ui, uj) and
the interaction reliability between vi and vj in  2 as w2

(vi, vj). The node similarity between ui ∈  and v j ∈
is denoted as s(ui, vj).
In order to use HMMs to search for the pathways that

are conserved in both networks, we search for the best
matching pair of paths u = ∈u u u uL i1 2 ( ) and
v = ∈v v v vL j1 2 ( ) of length L in the respective net-
works that maximizes the pathway alignment score H(u,
v). The alignment score H(u, v) integrates the node simi-
larity score s(ui,vj) between the aligned nodes ui and vj
(1 ≤ i, j ≤ L), the interaction reliability score w1(ui, ui+1)
between ui and ui+1 (1 ≤ i ≤ L – 1), the interaction relia-
bility score w2(vj, vj+1) between vj and vj+1 (1 ≤ j ≤ L –
1), and the penalty for potential gaps in the alignment.
We first construct two HMMs respectively for two

given networks. For 1 , we design the state transition
diagram of its corresponding HMM based on the graph
structure of 1 . The resulting HMM contains a hidden
state for each node ui ∈  , which we also denote as ui
for convenience. State transition is allowed from ui to uj
for (ui, uj) such that dij ∈ . The HMM for  2 can be
constructed in a similar way. To allow flexible node
insertions and/or deletions in the alignment result, we
add auxiliary states to the HMMs as described in
[14,15]. The state transition probabilities of the HMMs
are determined based on the interaction reliability scores
w1(ui, ui+1) and w2(vj, vj+1). By introducing a “virtual
observation sequence” q = q1 ... qL that is jointly emitted
by the two HMMs, we design the emission probabilities
based on the node similarity s(ui, vj). Using these
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HMMs, the problem of finding the optimal pair of paths
in the two networks is translated into that of finding the
optimal pair of state sequences in the two HMMs that
jointly maximize the probability P(q, u, v) of the “virtual
observation sequence”:

( , ) arg max ( , , ).
( , )

u v q u v
u v

∗ ∗ = P

We can use log P(q, u, v) as the alignment score H(u,
v), and find the best matching pair of paths using
dynamic programming [15]. For this purpose, we first
define the score for the most probable pair of paths of
length t(≤ L) as follows:

g g( , , ) max ( , , ) ( , ) ( , ) ( , )
,

t j l t i k t u u t v v s u v
i k

w i j w k l j l= − + + +⎡⎣ 1
1 2

⎤⎤⎦ , (1)

where tw1
(ui, uj) and tw2

(vk, vl) are the logarithms of
transition probabilities determined by the interaction
reliability scores in the respective networks. Next, we
find the optimal pair of paths (u*, v*)

H H L j l
j l

( , ) max ( , ) max ( , , ),
, ,

u v u v
u v

∗ ∗ = [ ] = (2)

by iteratively computing the score in (1) for l = 1, 2, ...
, L. Instead of finding only the best matching pair of
paths, we can also search for the top k path pairs by
replacing the max operator in (2) by an operator that
finds the k largest scores. The computational complexity
of the described dynamic programming algorithm is
only O(kLM1M2) for finding the top k pairs of matching
paths. Note that the computational complexity is linear
with respect to each parameter k, L, M1, and M2.
In our previous implementation of HMM-based local

alignment [14,15,20], we have used the sequence simi-
larity between individual molecules to measure the node
similarity s(ui, vj). As we discussed earlier, it is desirable
to integrate all the available information to measure the
similarity between network nodes, instead of relying on
the similarity between individual molecules. In this
paper, we propose to use a semi-Markov random walk
model to define a global correspondence scoring scheme
for measuring node similarity by incorporating the topo-
logical properties around the nodes. As we will demon-
strate later, the use of global correspondence scores can
improve the accuracy and robustness of the HMM-
based alignment results.

Computation of global correspondence scores through
semi-Markov random walk
In order to predict the global correspondence between
nodes, we should first consider the similarity between
the corresponding molecules themselves, in terms of
sequence, structure, and/or function. However,

considering that biomolecules carry out their functions
through intertwined interactions with other molecules,
it is important to consider these interaction patterns as
well when evaluating the global similarity between
nodes. As recently proposed and discussed in
[10,18,21,22], Markov random walk can provide an ele-
gant framework for evaluating the global correspon-
dence between nodes that belong to different networks
by seamlessly integrating the similarity between the
nodes themselves and that between their interaction
patterns.
In this work, we adopt the semi-Markov random walk

approach [18] to compute the global correspondence
scores for the node similarity s(ui, vj). The basic idea of
this scheme is to perform a simultaneous semi-Markov
random walk on 1 and  2 , such that the random
walker moves to one of the neighboring nodes in each
network at each time point. The next node is randomly
selected among all the neighboring nodes, where nodes
with higher interaction reliability have a larger chance
to be selected. The time that the random walker spends
at a given pair of nodes ui ∈1 and v j ∈ 2 is propor-
tional to the sequence similarity between the nodes.
According to this model, the long-run proportion of
time that the random walker spends at (ui, vj) will
increase if ui and vj have higher individual node similar-
ity (e.g., sequence similarity). Furthermore, the propor-
tion of time spent at (ui,vj) will also increase if the two
nodes are surrounded by similar nodes, hence have a
higher topological similarity. As a result, this semi-Mar-
kov random walk provides an elegant way of evaluating
the global similarity between nodes by integrating indivi-
dual node similarity and topological similarity. Using
this model, we can compute the global correspondence
score as follows:

s u v
u v h u v

u v h u v
i j

i j i j

i j i j
j

N

i

( , )
( ) ( ) ( , )

( ) ( ) ( , )
=

== ∑
p p

p p

1 2

1 2
11

2NN1∑
,

(3)

in which π1(ui) is the stationary probability of visiting
node ui in an ordinary Markov random walk on 1 , π2
(vj) is the stationary probability of visiting vj in a Mar-
kov random walk on  2 , and h(ui,vj) estimates the indi-
vidual node similarity between ui and vj, which is
measured in terms of sequence similarity in this work.
The above scheme is conceptually similar to the one
proposed in [10], where the similarity between two
nodes in different networks are measured by linearly
combining the topological similarity score and the
sequence similarity score. The resulting score can be
viewed as the long-run proportion of time spent at the
given pair of nodes based on a “Markov random walk
with restart” model, in which the restart probability has
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to be chosen in advance to balance the contributions
from the interaction similarity and the sequence similar-
ity, typically in an ad-hoc manner. Note that such para-
meter tuning is not needed in the semi-Markov random
walk approach adopted in this work.
In the following sections, we analyze the effect of

using the global correspondence scores in the HMM-
based local network alignment method. More specifi-
cally, we evaluate the performance of the HMM-based
local network alignment method when using the global
correspondence score for s(ui, vj) given in (3), and com-
pare it to the performance of the HMM-based align-
ment method that directly uses the sequence similarity
score with s(ui, vj) = h(ui, vj), as originally proposed in
[14,15].

Results and discussion
Aligning synthetic networks
To illustrate the advantages of using the global corre-
spondence scores in the HMM-based local network
alignment scheme, we first conducted a set of experi-
ments based on synthetically generated networks. Figure
1(A) shows two simple synthetic networks, each of
which contains a similar core path, respectively marked
in dark blue and dark red. We added more nodes
around the core path in each network in a way that the
corresponding nodes in the core paths have similar local
topological structures. We further assigned individual

node similarity scores, where nodes in the respective
networks that are located at similar vertical levels were
given higher scores. We assigned exceptionally high
similarity scores to two node pairs (u4, v11) and (u8,v13),
which are shown by dashed lines in Fig. 1(A). These two
highly similar pairs are analogous to molecules in real
biological networks that have high sequence similarity
without real biological significance. Such nodes can mis-
lead the alignment algorithm, yielding inaccurate align-
ment results. In fact, we may typically face similar
problems when aligning two or more large-scale biologi-
cal networks. The network adjacency matrices and the
node similarity matrix are provided in the Additional
file 1.
We applied the HMM-based local alignment to iden-

tify the most similar pair of paths of length L = 5. The
identified top pair of paths when directly using the
assigned node similarity scores is shown in Fig. 1(B).
We notice that the alignment result is strongly influ-
enced by the high similarity pairs (u4,v11) and ((u8, v13)
in this case and the prediction does not capture the
obvious topological similarity in the two networks. Next,
we computed the global correspondence scores between
nodes based on the semi-Markov random walk scheme
and used these scores in the alignment algorithm,
instead of the original node similarity scores. Figure 1
(C) shows the top path alignment for this case, where
the core paths were accurately identified as we expect

u1u2u3
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u5u6

u7 u8 u9

u10

v1 v2

v3

v4

v5

v6

v7v8 v12

v11

v9 v10 v13
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u8

u3 v3

v12
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v11

v6
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u4

u6

u8

u10
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v5

v7

v9G1 G2

A B C
Figure 1 An illustrative example that demonstrates the advantage of using global correspondence scores: (A) Two small synthetic networks that
contain similar paths (shown in colors); (B) The top pair of aligned paths predicted by the HMM-based alignment algorithm using the individual
node similarity scores; (C) The top pair of aligned paths predicted by the HMM-based method using global node correspondence scores
computed by semi-Markov random walk.
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based on the topology of the two networks. Simulations
based on other small synthetic networks, constructed in
similar ways, yielded similar results (see Additional file
1 for other examples).
For a more thorough performance comparison

between the two different schemes—the original scheme
that directly uses the individual similarity scores and the
proposed scheme that uses the global correspondence
scores computed by semi-Markov random walk—we
further created a benchmark set that consists of large
synthetic networks generated based on a scale-free
model [23]. Although we can also evaluate the perfor-
mance of network alignment algorithms by aligning real
biological networks and measuring the accuracy of the
alignment results using functional annotations based on
Gene Ontology (GO) terms [24] or KEGG ortholog
(KO) group annotations [25], these annotations are still
highly incomplete and may not accurately reflect the
real functional similarity between molecules. As a result,
a carefully constructed synthetic benchmark dataset may
provide a better benchmark for evaluating future net-
work alignment algorithms.
To construct the synthetic networks, we first ran-

domly generated an undirected seed network  of size
20 with an average degree of 10. Next, we grew this net-
work according to the BA (Barabasi and Albert) model
[23] to generate a random scale-free network using the
preferential attachment algorithm [26]. In this algorithm,
at each time step, a new node is added to the network
and connected to m existing nodes with a probability
that is proportional to the number of links that the
nodes already have. As shown in [23], the resulting net-
work captures several important characteristics of real
PPI networks. The scale-free degree distribution is one
such property, which means that the degree distribution
of the network approximately follows the power law P
(k) ~ kg, where g is the degree exponent. In this work,
we used this model with m = 10 to grow  to a net-
work of size 1000. Once  was created, we duplicated
the network into two identical networks  1 = and
 2 = . To model the functional coherence between
orthologous proteins, we then assigned a distinct group
annotation to each pair of corresponding proteins in the
two networks. More specifically, both the node ui in 1
and the node vi in  2 were assigned to the ith func-
tional group. We randomly assigned individual node
similarity scores between orthologous nodes according
to the Gaussian distribution  ( , )m so o

2 with mean µo
= 300 and standard deviation so = 100. The node simi-
larity scores between non-orthologous nodes were ran-
domly assigned according to a different distribution
 ( , )m s 2 , where s = 100, and µ was used as a free
parameter that determines the level of overlap between
the two similarity score distributions. Node similarity

scores below a certain threshold (set to 50 in this work)
were set to zero. For every node, we also restricted the
number of non-orthologous nodes with a nonzero simi-
larity score to 10. These settings were used to make the
resulting random networks similar to real PPI networks
in public databases.
Up to this point, the two networks 1 and  2 were

topologically identical. To introduce topological differ-
ences in these networks, we randomly deleted 10% of
the edges in 1 and  2 . Furthermore, we also ran-
domly deleted 10% of the nodes in the two networks
and added back an identical number of new nodes by
growing the networks using the preferential attachment
algorithm. No functional group was assigned to these
randomly inserted nodes. The node similarity between
the inserted nodes in one network and the nodes in the
other network was sparsely assigned according to
 ( , )m s 2 , as before.
Based on the above model, we generated two networks
1 and  2 with µ = 200. Using the HMM-based local
network alignment algorithm, we identified the top 200
high-scoring path alignments with gaps. To find the top
200 path alignments, we iterated the following steps: (i)
find the optimal path alignment; (ii) store the predicted
alignment; (iii) remove the interactions included in the
path alignments; (iv) repeat the experiment to find the
next path alignment. The accuracy of the identified path
pairs are measured based on the group annotations of
the aligned nodes as in [11,15]. We define the cumula-
tive specificity of the top k alignments as follows:

cs
c

c
k

i
c

i

k

i
a

i

k= =

=

∑
∑

1

1

, (4)

where ci
c the total number of correctly aligned node

pairs in the top ith alignment, and ci
a is the total num-

ber of annotated node pairs also in the top ith align-
ment. We also define the cumulative coverage of the
top k alignments as cc ck i

c

i

k
=

=∑ 1
, which computes

the cumulative number of pairs with the same func-
tional annotations. This metric measures the size of the
accurately aligned network regions covered by the top k
path alignments. We repeated the alignment experi-
ments for different path lengths: L = 10, 20, and 30. The
alignment results are summarized in Fig. 2. As we can
see in this figure, the use of global node correspondence
scores computed by the semi-Markov random walk
approach significantly improves the specificity of the
alignment, while the coverage is also slightly improved.
This clearly shows that incorporating topological infor-
mation of network nodes into the alignment process can
be crucial in obtaining accurate alignment results when
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the individual node similarity scores are not highly dis-
criminative by themselves.
Next, we investigated performance improvement by

the proposed approach for varying levels of overlap
between the node similarity score distribution for

orthologous nodes and that for non-orthologous nodes.
We set L = 30 and evaluated the performance of the
HMM-based alignment algorithm using the global cor-
respondence scores and the individual similarity scores,
respectively, for various values of µ. The simulation

(C) (F)

(A)

(B)

(D)

(E)

Figure 2 Functional specificity (A,B,C) and coverage (D,E,F) of the synthetic network alignment obtained by the HMM-based local network
alignment method using the global node correspondence scores and the individual node similarity scores for L = 10 (A,D), L = 20 (B,E), and L =
30 (C,F).
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results are shown Fig. 3. As shown in this figure, the
advantage of using the global correspondence scores for
network alignment becomes more prominent for larger
µ. When µ is small (e.g., µ = 150), we can accurately
identify orthologous nodes by using individual node
similarity scores. However, as µ increases and the indivi-
dual node similarity scores become less discriminative, it
becomes more critical to utilize topological information
to identify orthologs. This can be seen when µ = 250, in
which case the use of global correspondence scores can
remarkably improve the accuracy of the alignment. It is
also apparent from the figure that the performance of
local network alignment using individual node similarity
degrades much faster as the individual similarity gets
less informative. This implies that we can obtain more
robust and reliable alignment results by incorporating
the global correspondence scores into the HMM-based
local network alignment algorithm. (The URL for down-
loading the synthetic networks used in our experiments
can be found in the Additional file 1.)

Aligning microbial PPI networks
For further evaluation of the proposed method, we per-
formed pairwise alignments of three microbial PPI net-
works obtained from [7]. In our experiments, we aligned
the E. coli network and the C. crescentus networks to
detect conserved functional modules in the two net-
works. Similarly, we also performed a pairwise align-
ment between the E. coli and the S. typhimurium
networks to find conserved modules in these networks.
As before, we have assessed the accuracy of the align-
ment results using two metrics—namely, specificity and
coverage—based on the KEGG ortholog (KO) group

annotations [25] of the proteins in the microbial net-
works. A protein alignment is regarded as being correct
if the aligned proteins have the same KO group annota-
tions, and incorrect if the annotations do not agree.
In these experiments, the parameters of the HMMs

were chosen as follows. First, the transition scores tw(ui,
uj) in (1) were determined based on the presence (or
absence) of protein interactions in the microbial net-
works determined by the SRINI algorithm [27]:

t u u
u u

w i j
i j( , )

,

,
=

−∞
0 if interaction between  and  exists;

otheerwise.

⎧
⎨
⎩

(5)

Second, we used the BLASTP hit scores between pro-
tein pairs, provided in [7], as the individual node simi-
larity scores. The global correspondence scores were
computed according to the semi-Markov random walk
approach described earlier. These two types of node
similarity scores were normalized such that they lie in
the same range.
Based on the constructed HMMs, we used our local

network alignment algorithm to find the 200 top-scoring
pathway alignments with gaps. This experiment was also
repeated for several different virtual path length: L = 10,
20, and 30. In all our experiments, we disallowed multi-
ple occurrences of identical protein pairs in a given path
alignment. The cumulative specificity csk of the pairwise
alignment of the E. coli and the C. crescentus networks
using the two different types of node similarities are
shown in Figs. 4(A), (B), and (C) for L = 10, 20, and 30,
respectively. The results of the pairwise alignment of the
E. coli and the S. typhimurium networks are shown in
Figs. 4(D), (E), and (F). Figure 5 shows the cumulative

(A) (B)

Figure 3 Functional specificity (A) and coverage (B) of the synthetic network alignment obtained using global correspondence scores and
individual node similarity scores for various µ = {150, 175, 200, 225, 250}.
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(F)

(A)

(B)

(C)

(D)

(E)

Figure 4 Functional specificity of the microbial network alignment obtained by the HMM-based local network alignment method using the
global correspondence scores and the individual node similarity scores. The cumulative specificity of the top 200 path alignments are shown:
(A) Pairwise alignment between E. coli and C. crescentus networks with L = 10; (B) Pairwise alignment between E. coli and C. crescentus networks
with L = 20; (C) Pairwise alignment between E. coli and C. crescentus networks with L = 30; (D) Pairwise alignment between E. coli and S.
typhimurium networks with L = 10; (E) Pairwise alignment between E. coli and S. typhimurium networks with L = 20; (F) Pairwise alignment
between E. coli and S. typhimurium networks with L = 30.
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coverage cck of the predicted path alignments using the
two different node similarity scores.
As we can see from the pairwise alignment results of

the E. coli and the C. crescentus networks, shown in Fig.

4(A), (B), (C) and Fig. 5(A), (B), (C), when the coverage
of the predicted path alignments is comparable, using
the global correspondence scores results in higher speci-
ficity compared to using the individual node similarity

(A)

(B)

(C)

(D)

(E)

(F)

Figure 5 Functional coverage for microbial network alignment using the new semi-Markov node similarity and the original sequence similarity:
The cumulative sensitivity of the top 200 aligned pathways obtained from (A) the pairwise alignment between E. coli and C. crescentus networks
with L = 10; (B) the pairwise alignment between E. coli and C. crescentus networks with L = 20; (C) the pairwise alignment between E. coli and C.
crescentus networks with L = 30; (D) the pairwise alignment between E. coli and S. typhimurium networks with L = 10; (D) the pairwise alignment
between E. coli and S. typhimurium networks with L = 20; (D) the pairwise alignment between E. coli and S. typhimurium networks with L = 30.
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scores. This implies that HMM-based network alignment
based on global correspondence scores can more effec-
tively capture the functional similarity between nodes.
However, as we can see in Fig. 5(D), (E), (F), the protein
pairs aligned using the semi-Markov random walk based
global correspondence scores are less annotated (as
reflected in the lower coverage cck) for the pairwise align-
ment of the E. coli and the S. typhimurium networks, in
which case the specificity of the predicted alignment is not
necessarily improved by the global scores. This can be
seen in Fig. 4(D), (E), (F). One possible explanation for this
observation is that the KO group annotations may have
been curated largely baed on sequence similarity between
proteins. For example, for remote orthologs that do not
have high sequence similarity, it may be practically difficult
to judge to which KO group they should belong since
there is not enough evidence. From this point of view, net-
work alignment using global correspondence scores
obtained from semi-Markov random walk could be used
to validate and improve functional annotation of proteins.
In order to further examine the biological significance

of the alignment results obtained from the proposed
method, we retrieved the unannotated protein pairs that
are aligned in the top path alignments predicted by com-
paring the E. coli and the S. typhimurium networks. As
these proteins do not have curated functional

annotations, such as GO terms or KO groups, we manu-
ally checked the protein information for the first 20
unannotated pairs in the Protein database at the National
Center for Biotechnology Information (NCBI) [28]. Table
1 shows the assigned gene names and regions names
based on the Genlnfo Identifiers (GIs) of these aligned
proteins. Among these 20 protein pairs that are unanno-
tated in the KEGG database, 18 pairs consist of proteins
that have been assigned with the exactly same gene
names and region names. In fact, these protein pairs
indeed have similar cellular functionalities, where many
of them are membrane proteins. Further information
about these protein pairs can be found at the URLs
included in the Additional file 1. For the remaining two
protein pairs (shown in bold face in Table 1), we could
see that the aligned proteins were not assigned with the
same gene names because the proteins in the S. typhi-
murium network were not annotated. When we checked
the region names of the aligned proteins in each pair, we
could see that the proteins in the first pair have the same
region name “Transposase_3l” and those in the second
pair have the same region name “DUF1131”. These
observations suggest that the HMM-based network align-
ment method using semi-Markov random walk scores
may provide a promising framework for automatic func-
tional annotation of proteins.

Table 1 Gene names and Region names based on the GenInfo Identifiers (GIs) of the top 20 unannotated protein pairs
that are aligned in the top conserved paths. Synonymous gene names are shown within parentheses.

E. coli S. typhimurium

GI Gene name Region name GI Gene name Region name

16131641 wzzE Wzz 16767194 wzzE Wzz

49176398 viaA (yieM) VWA_YIEM_type 39546380 yieM VWA_YIEM_type

16131399 yhjJ PqqL 16766899 yhjJ PqqL

16131130 aaeB (yhcP) FUSC 16766659 yhcP FUSC

16130240 yfcl Transposase_31 16767050 STM3766 Transposase_31

49176226 bamC (nlpB) Lipoprotein_l8 16765808 nlpB Lipoprotein_l8

16129342 ydbH DctA-YdbH 16764990 ydbH DctA-YdbH

49176233 sseB SseB 16765855 sseB SseB

16129572 ydgA PRK11367 16764812 ydgA PRK11367

16131557 yidR propeller_TolB 16767096 yidR TolB

16131404 bcsB (yhjN) BcsB 16766904 yhjN BcsB

16130950 ygiF CYTH-like_Pase_CHAD 16766502 ygiF CYTH-like_Pase_CHAD

16131855 yjbH DUF94O 16767475 yjbH DUF940

16128005 yaaW (htgA) Ubiq_cyt_C_chap 16763400 htgA Ubiq_cyt_C_chap

16130391 ypfG DUF1176 16765796 ypfG DUF1176

16130357 yfeY DUF1131 16765767 STM2447 DUF1131

49176330 yhdP PRK10899 16766664 yhdP PRK10899

16131526 yicH AsmA 16767033 yicH AsmA

16131275 yrfF IgaA 16766783 yrfF IgaA

16129282 ycjx DUF463 16765028 ycjx DUF463

Qian et al. BMC Bioinformatics 2011, 12(Suppl 10):S6
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Conclusion
In this paper, we studied the effect of using a global simi-
larity scoring scheme to measure the node similarity and
incorporating these global scores in the HMM-based local
network alignment algorithm. We used the semi-Markov
random walk framework to compute the global correspon-
dence scores between nodes in different networks. The
resulting scores can effectively combine the topological
similarity of the subnetworks around the network nodes
as well as their individual molecular similarity. Experimen-
tal results on microbial protein-protein interaction net-
works and synthetic scale-free networks show that the use
of global correspondence scores can better identify paths
with similar topological properties, thereby improving the
specificity of the predicted alignment. We believe that the
proposed alignment scheme can provide an effective and
computationally efficient framework for developing robust
and accurate functional annotation tools for proteins.

Additional material

Additional file 1: supplement.pdf This file contains: (i) information of
the benchmark set that contains randomly generated synthetic networks,
(ii) additional experimental results, and (iii) relevant information regarding
the unannotated pairs of aligned proteins in microbial networks.
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