33 research outputs found

    Consistent generation of ice-streams via thermo-viscous instabilities modulated by membrane stresses

    Get PDF
    Accurate computation of ice-stream location and dynamics is a key aspiration for theoretical glaciology. Ice-sheet models with thermo-viscous coupling have been shown to exhibit stream-like instabilities using shallow-ice approximation mechanics, but the location and width of these streams depends on the numerical implementation and are not unique. We present results from thermo-viscously coupled ice-sheet models incorporating membrane stresses. Spontaneous generation of fast-flowing linear features still occurs under certain parameter regimes, with computed stream widths between 20 km to 100 km, comparable with observations. These features are maintained as the grid-size is decreased. The thermo-viscous feedback mechanism that generates ice-streams under the shallow ice approximation still operates, now selecting a unique stream size. Computations of thermo-viscous ice flows should include membrane stresses when the bed is approximately flat, e. g. parts of Antarctica and former ice-sheets of the Northern hemisphere. Previous calculations of spontaneous ice-stream generation using the shallow ice approximation should be reassessed. Citation: Hindmarsh, R. C. A. (2009), Consistent generation of ice-streams via thermo-viscous instabilities modulated by membrane stresses, Geophys. Res. Lett., 36, L06502, doi:10.1029/2008GL036877

    Properties of MoNxOy thin films as a function of N/O ratio

    Get PDF
    The main purpose of this work consists on the preparation of single layered molybdenum oxynitride, MoNxOy. The films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure Mo target varying the flow rate of reactive gases, which allowed tune the crystallographic structure between insulating oxides and metallic nitrides and consequently electronic, mechanical and optical properties of the material. X-ray diffraction (XRD) results revealed the occurrence of molybdenum nitride for the films with low oxygen fraction: face-centred cubic phases (gama-Mo2N) for low nitrogen flow rate or cubic MoNx and hexagonal phase (delta-MoN) for high nitrogen flow rate. The increase of oxygen content induces an amorphization of the nitride phases and appearance of MoO3 phases. The increase of the oxygen fraction in the films induces also a high decrease in films hardness. Residual stresses revealed to be of compressive type, in the range of very few tenths of GPa to 2 GPa. All these results have been analysed and will be presented as a function of the deposition parameters, the chemical composition and the structure of the films.Fundação para a Ciência e a Tecnologia (FCT) – Pograma Operacional “Ciência, Tecnologia, Inovação” - POCTI/CTM/38086/2001.Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER)

    Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Get PDF
    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage

    Retrospective evaluation of blood copper stable isotopes ratio Cu-65/Cu-63 as a biomarker of cancer in dogs

    No full text
    International audiencePrevious studies in humans with breast, colorectal or liver cancer showed that neoplasia was associated with a modification of the blood ratio between Cu-65 and Cu-63 (partial derivative Cu). The aim of the present study was to compare the blood partial derivative Cu of dogs with cancer to healthy controls or dogs with non-oncologic disease. One hundred and seventeen dogs were included in the study (35 dogs with cancer, 33 dogs with non-neoplastic disease, and 49 healthy controls). The partial derivative Cu of dogs with cancer was significantly lower than the ratio of healthy controls (P \textless 0.0001) but not significantly different from dogs with non-oncologic disease. Six dogs with lymphoma were also evaluated after they achieved clinical remission and five out of six had an increase of partial derivative Cu. Further studies are warranted but these results suggest that partial derivative Cu could help in the diagnosis of cancer in a controlled clinical context, and may be a potential biomarker for the follow-up of cancer

    Multiple sea-ice states and abrupt MOC transitions in a general circulation ocean model

    Get PDF
    Sea ice has been suggested, based on simple models, to play an important role in past glacial–interglacial oscillations via the so-called “sea-ice switch” mechanism. An important requirement for this mechanism is that multiple sea-ice extents exist under the same land ice configuration. This hypothesis of multiple sea-ice extents is tested with a state-of-the-art ocean general circulation model coupled to an atmospheric energy–moisture-balance model. The model includes a dynamic-thermodynamic sea-ice module, has a realistic ocean configuration and bathymetry, and is forced by annual mean forcing. Several runs with two different land ice distributions represent present-day and cold-climate conditions. In each case the ocean model is initiated with both ice-free and fully ice-covered states. We find that the present-day runs converge approximately to the same sea-ice state for the northern hemisphere while for the southern hemisphere a difference in sea-ice extent of about three degrees in latitude between the different runs is observed. The cold climate runs lead to meridional sea-ice extents that are different by up to four degrees in latitude in both hemispheres. While approaching the final states, the model exhibits abrupt transitions from extended sea-ice states and weak meridional overturning circulation, to less extended sea ice and stronger meridional overturning circulation, and vice versa. These transitions are linked to temperature changes in the North Atlantic high-latitude deep water. Such abrupt changes may be associated with Dansgaard–Oeschger events, as proposed by previous studies. Although multiple sea ice states have been observed, the difference between these states is not large enough to provide a strong support for the sea-ice-switch mechanism
    corecore