1,511 research outputs found

    Microbial ecology of high zinc level streams

    Get PDF
    A study has been carried out of zinc enrichment in streams draining the Northern Pennine Orefield and the effects of this enrichment on the algae. The sources of the contamination are described and are attributed mainly to continued discharge from adits, and drainage from tailings heaps associated with the disused lead-zinc mines. Details of surveys performed on 10m reaches situated on 45 streams and an intensive survey of 30 reaches on one stream (Gillgill Burn, Nenthead, Cumbria) are given. Using factor analysis to evaluate the interrelationships of the inorganic chemical components, the weathering of carbonate minerals was indicated as being an important factor in controlling the ionic composition of the waters. With increasing levels of zinc, fewer species of algae were represented. Of those species that were present at the higher levels, the genus Hormidium was frequently evident. In particular, H, rivulare was widespread and often also abundant. A survey of 47 reaches with both high and low levels of zinc was carried out to establish the extent to which populations of Hormidium spp. taken from the former were in fact resistant to the zinc. It was demonstrated in the laboratory for H, rivulare that this resistance was largely, if not entirely, due to genetic adaptation. An assessment of the influence of environmental factors in the field on the toxicity of zinc to H, rivulare was made by comparing the results of laboratory bioassays with the detailed water chemistry of the sites from which populations were taken. These tentative results were compared with experimental studies in the laboratory. The important factors increasing toxicity are Cd and a rise in pH. Factors leading to a decrease in toxicity are Mg, Ca, and PO(_4)-P

    Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis.

    Get PDF
    Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations

    Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics

    Get PDF
    We demonstrate the complete filling of both deionized water (DI water) and liquid metal (eutectic gallium-indium, EGaIn) into closed-end microchannels driven by a constant pressure at the inlet. A mathematical model based on gas diffusion through a porous polydimethylsiloxane (PDMS) wall is developed to unveil the physical mechanism in the filling process. The proposed theoretical analysis based on our model agrees well with the experimental observations. We also successfully generate traveling surface acoustic waves by actuating interdigitated microchannels filled with EGaIn. Our work provides significant insights into the fabrication of liquid electrodes that can be used for various acustofluidics applicationsAustralian Research Council DE170100600National Natural Science Foundation of China Grants No. 11472094, No. 11772259, No. U1613227, No. B1703

    Islet autoantibody status in a multi-ethnic UK clinic cohort of children presenting with diabetes.

    Get PDF
    OBJECTIVE: We prospectively determined islet autoantibody status in children presenting with diabetes to a single UK region in relation to ethnicity. DESIGN: 316 (68.0% non-white) children presenting with diabetes between 2006 and 2013 were tested centrally for islet cell autoantibodies (ICA) and glutamic acid decarboxylase autoantibodies (GAD-65) at diagnosis, and if negative for both, tested for insulin autoantibodies (IAA). The assay used to measure GAD-65 autoantibodies changed from an in-house to a standardised ELISA method during the study. RESULTS: Even with use of the standardised ELISA method, 25.8% of children assigned a diagnosis of type 1 diabetes still tested negative for all three autoantibodies. 30% of children assigned a diagnosis of type 2 diabetes were autoantibody positive, and these had the highest glycated haemoglobin (HbA1c) levels at 12 months follow-up compared with other groups (p value for analysis of variance <0.001), although the sample size was small. Autoantibody positivity was similar between non-white and white children regardless of assay used (60.0% (n=129) vs 56.4% (n=57), χ2=0.9, p=0.35), as was mean GAD-65 autoantibody levels, but fewer non-white children had two or more autoantibodies detectable (13% (n=28) vs 27.7% (n=28), χ2=12.1, p=0.001). CONCLUSION: Islet autoantibody positivity was associated with a more severe phenotype, as demonstrated by poorer glycaemic control, regardless of assigned diabetes subtype. Positivity did not differ by ethnic group

    Re-Evaluation of the UK’s HFC-134a Emissions Inventory Based on Atmospheric Observations

    Get PDF
    Independent verification of national greenhouse gas inventories is a vital measure for cross-checking the accuracy of emissions data submitted to the United Nations Framework Convention on Climate Change (UNFCCC). We infer annual UK emissions of HFC-134a from 1995 to 2012 using atmospheric observations and an inverse modeling technique, and compare with the UK’s annual UNFCCC submission. By 2010, the inventory is almost twice as large as our estimates, with an “emissions gap” equating to 3.90 (3.20–4.30) Tg CO<sub>2</sub>e. We evaluate the RAC (Refrigeration and Air-Conditioning) model, a bottom up model used to quantify UK emissions from refrigeration and air-conditioning sectors. Within mobile air-conditioning (MAC), the largest RAC sector and most significant UK source (59%), we find a number of assumptions that may be considered oversimplistic and conservative; most notably the unit refill rate. Finally, a Bayesian approach is used to estimate probable inventory inputs required for minimization of the emissions discrepancy. Our top-down estimates provide only a weak constraint on inventory model parameters and consequently, we are unable to suggest discrete values. However, a significant revision of the MAC servicing rate, coupled with a reassessment of non-RAC aerosol emissions, are required if the discrepancy between methods is to be reduced

    Electrical stimulation for enhanced denitrification in woodchip bioreactors: Opportunities and challenges

    Get PDF
    Woodchip bioreactors are being implemented for the removal of nitrates in groundwater and tile water drainage. However, low nitrate removals in denitrifying woodchip bioreactors have been observed for short hydraulic retention time (HRT) and low water temperature (°C). One potential approach to improve woodchip bioreactor performance is to provide an alternative and readily available electron source to the denitrifying microorganisms through electrical stimulation. Previous work has demonstrated the capability of bio-electrochemical reactors (BER) to remove a variety of water contaminants, including nitrate, in the presence of a soluble carbon source. The objective of this study was to evaluate the denitrification efficiency of electrically augmented woodchip bioreactors and conduct a simple techno-economic analysis (TEA) to understand the possibilities and limitations for full-scale BER implementation for treatment of agricultural drainage. Up-flow column woodchip bioreactors were studied included two controls (non-energized, and without electrodes), two electrically enhanced bioreactors, each using a single 316 stainless steel anode coupled with graphite cathodes, and two electrically enhanced bioreactors, each with graphite for both anode and cathodes. Both pairs of electrically enhanced bioreactors demonstrated higher denitrification efficiencies than controls when 500 mA of current was applied. While this technology appeared promising, the techno-economic analysis showed that the normalized N removal cost ($/kg N) for BERs was 2–10 times higher than the base cost with no electrical stimulation. With our current reactor design, opportunities to make this technology cost effective require denitrification efficiency of 85% at 100 mA. This work informs the process and design of electrically stimulated woodchip bioreactors with optimized performance to achieve lower capital and maintenance costs, and thus lower N removal cost

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Unary probabilistic and quantum automata on promise problems

    Full text link
    We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.Comment: Minor correction

    Stability of white matter changes related to Huntington's disease in the presence of imaging noise: a DTI study.

    Get PDF
    Movement artifacts and other sources of noise are a matter of concern particularly in the neuroimaging research of movement disorders such as Huntington's disease (HD). Using diffusion weighted imaging (DWI) and fractional anisotropy (FA) as a compound marker of white matter integrity, we investigated the effect of movement on HD specific changes in magnetic resonance imaging (MRI) data and how post hoc compensation for it affects the MRI results. To this end, we studied by 3T MRI: 18 early affected, 22 premanifest gene-positive subjects, 23 healthy controls (50 slices of 2.3 mm thickness per volume, 64 diffusion-weighted directions (b = 1000 s/mm2), 8 minimal diffusion-weighting (b = 100 s/mm2)); and by 1.5 T imaging: 29 premanifest HD, 30 controls (40 axial slices of 2.3 mm thickness per volume, 61 diffusion-weighted directions (b = 1000 s/mm2), minimal diffusion-weighting (b = 100 s/mm2)). An outlier based method was developed to identify movement and other sources of noise by comparing the index DWI direction against a weighted average computed from all other directions of the same subject. No significant differences were observed when separately comparing each group of patients with and without removal of DWI volumes that contained artifacts. In line with previous DWI-based studies, decreased FA in the corpus callosum and increased FA around the basal ganglia were observed when premanifest mutation carriers and early affected patients were compared with healthy controls. These findings demonstrate the robustness of the FA value in the presence of movement and thus encourage multi-center imaging studies in HD
    • …
    corecore