1,090 research outputs found

    Functional Organization of Social Perception and Cognition in the Superior Temporal Sulcus

    Get PDF
    The superior temporal sulcus (STS) is considered a hub for social perception and cognition, including the perception of faces and human motion, as well as understanding others' actions, mental states, and language. However, the functional organization of the STS remains debated: Is this broad region composed of multiple functionally distinct modules, each specialized for a different process, or are STS subregions multifunctional, contributing to multiple processes? Is the STS spatially organized, and if so, what are the dominant features of this organization? We address these questions by measuring STS responses to a range of social and linguistic stimuli in the same set of human participants, using fMRI. We find a number of STS subregions that respond selectively to certain types of social input, organized along a posterior-to-anterior axis. We also identify regions of overlapping response to multiple contrasts, including regions responsive to both language and theory of mind, faces and voices, and faces and biological motion. Thus, the human STS contains both relatively domain-specific areas, and regions that respond to multiple types of social information.David & Lucile Packard FoundationNational Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.) (CCF-1231216

    Using child-friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years

    Get PDF
    Scanning young children while they watch short, engaging, commercially‐produced movies has emerged as a promising approach for increasing data retention and quality. Movie stimuli also evoke a richer variety of cognitive processes than traditional experiments, allowing the study of multiple aspects of brain development simultaneously. However, because these stimuli are uncontrolled, it is unclear how effectively distinct profiles of brain activity can be distinguished from the resulting data. Here we develop an approach for identifying multiple distinct subject‐specific Regions of Interest (ssROIs) using fMRI data collected during movie‐viewing. We focused on the test case of higher‐level visual regions selective for faces, scenes, and objects. Adults (N = 13) were scanned while viewing a 5.6‐min child‐friendly movie, as well as a traditional localizer experiment with blocks of faces, scenes, and objects. We found that just 2.7 min of movie data could identify subject‐specific face, scene, and object regions. While successful, movie‐defined ssROIS still showed weaker domain selectivity than traditional ssROIs. Having validated our approach in adults, we then used the same methods on movie data collected from 3 to 12‐year‐old children (N = 122). Movie response timecourses in 3‐year‐old children's face, scene, and object regions were already significantly and specifically predicted by timecourses from the corresponding regions in adults. We also found evidence of continued developmental change, particularly in the face‐selective posterior superior temporal sulcus. Taken together, our results reveal both early maturity and functional change in face, scene, and object regions, and more broadly highlight the promise of short, child‐friendly movies for developmental cognitive neuroscience

    Response patterns in the developing social brain are organized by social and emotion features and disrupted in children diagnosed with autism spectrum disorder

    Get PDF
    © 2019 Elsevier Ltd Adults and children recruit a specific network of brain regions when engaged in “Theory of Mind” (ToM) reasoning. Recently, fMRI studies of adults have used multivariate analyses to provide a deeper characterization of responses in these regions. These analyses characterize representational distinctions within the social domain, rather than comparing responses across preferred (social) and non-preferred stimuli. Here, we conducted opportunistic multivariate analyses in two previously collected datasets (Experiment 1: n = 20 5–11 year old children and n = 37 adults; Experiment 2: n = 76 neurotypical and n = 29 5–12 year old children diagnosed with Autism Spectrum Disorder (ASD)) in order to characterize the structure of representations in the developing social brain, and in order to discover if this structure is disrupted in ASD. Children listened to stories that described characters' mental states (Mental), non-mentalistic social information (Social), and causal events in the environment (Physical), while undergoing fMRI. We measured the extent to which neural responses in ToM brain regions were organized according to two ToM-relevant models: 1) a condition model, which reflected the experimenter-generated condition labels, and 2) a data-driven emotion model, which organized stimuli according to their emotion content. We additionally constructed two control models based on linguistic and narrative features of the stories. In both experiments, the two ToM-relevant models outperformed the control models. The fit of the condition model increased with age in neurotypical children. Moreover, the fit of the condition model to neural response patterns was reduced in the RTPJ in children diagnosed with ASD. These results provide a first glimpse into the conceptual structure of information in ToM brain regions in childhood, and suggest that there are real, stable features that predict responses in these regions in children. Multivariate analyses are a promising approach for sensitively measuring conceptual and neural developmental change and individual differences in ToM.NSF (Award 1122374

    Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language

    Get PDF
    Early linguistic experience directly facilitates social development in childhood. Here, the authors reveal that children with delayed access to language show delayed development of selective responses in cortical regions involved in thinking about others’ thoughts

    Are all beliefs equal? Implicit belief attributions recruiting core brain regions of theory of mind

    Get PDF
    Humans possess efficient mechanisms to behave adaptively in social contexts. They ascribe goals and beliefs to others and use these for behavioural predictions. Researchers argued for two separate mental attribution systems: an implicit and automatic one involved in online interactions, and an explicit one mainly used in offline deliberations. However, the underlying mechanisms of these systems and the types of beliefs represented in the implicit system are still unclear. Using neuroimaging methods, we show that the right temporo-parietal junction and the medial prefrontal cortex, brain regions consistently found to be involved in explicit mental state reasoning, are also recruited by spontaneous belief tracking. While the medial prefrontal cortex was more active when both the participant and another agent believed an object to be at a specific location, the right temporo-parietal junction was selectively activated during tracking the false beliefs of another agent about the presence, but not the absence of objects. While humans can explicitly attribute to a conspecific any possible belief they themselves can entertain, implicit belief tracking seems to be restricted to beliefs with specific contents, a content selectivity that may reflect a crucial functional characteristic and signature property of implicit belief attribution
    • 

    corecore