8,534 research outputs found

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Composition of Haar Paraproducts: The Random Case

    Full text link
    When is the composition of paraproducts bounded? This is an important, and difficult question, related to to a question of Sarason on composition of Hankel matrices, and the two-weight problem for the Hilbert transform. We consider randomized variants of this question, finding non-classical characterizations, for dyadic paraproducts.Comment: 13 pages. Submitted. v2: \showkeys commented out, with other minor change

    Cold heteromolecular dipolar collisions

    Get PDF
    We present the first experimental observation of cold collisions between two different species of neutral polar molecules, each prepared in a single internal quantum state. Combining for the first time the techniques of Stark deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the enhancement of molecular interaction time by 105^5. This has enabled an absolute measurement of the total trap loss cross sections between OH and ND3_3 at a mean collision energy of 3.6 cm1^{-1} (5 K). Due to the dipolar interaction, the total cross section increases upon application of an external polarizing electric field. Cross sections computed from \emph{ab initio} potential energy surfaces are in excellent agreement with the measured value at zero external electric field. The theory presented here represents the first such analysis of collisions between a 2Π^2\Pi radical and a closed-shell polyatomic molecule.Comment: 7 pages, 5 figure

    Physiology, development, and disease modeling in the Drosophila excretory system

    Get PDF
    The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell–based injury repair, cancer-promoting processes, and communication between the intestine and nervous system

    Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions

    Full text link
    We revisit the vertical structure of neutrino dominated accretion flows (NDAFs) in spherical coordinates with a new boundary condition based on the mechanical equilibrium. The solutions show that NDAF is significantly thick. The Bernoulli parameter and neutrino trapping are determined by the mass accretion rate and the viscosity parameter. According to the distribution of the Bernoulli parameter, the possible outflow may appear in the outer region of the disk. The neutrino trapping can essentially affect the neutrino radiation luminosity. The vertical structure of NDAF is like a "sandwich", and the multilayer accretion may account for the flares in gamma-ray bursts.Comment: 7 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    Cold heteromolecular dipolar collisions

    Get PDF
    We present the first experimental observation of cold collisions between two different species of neutral polar molecules, each prepared in a single internal quantum state. Combining for the first time the techniques of Stark deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the enhancement of molecular interaction time by 105^5. This has enabled an absolute measurement of the total trap loss cross sections between OH and ND3_3 at a mean collision energy of 3.6 cm1^{-1} (5 K). Due to the dipolar interaction, the total cross section increases upon application of an external polarizing electric field. Cross sections computed from \emph{ab initio} potential energy surfaces are in excellent agreement with the measured value at zero external electric field. The theory presented here represents the first such analysis of collisions between a 2Π^2\Pi radical and a closed-shell polyatomic molecule.Comment: 7 pages, 5 figure

    Evaluating the Feasibility and Impact of a Well-being Retreat for Physicians and Advanced Practice Providers

    Get PDF
    Introduction: Work stress experienced by physicians and advanced practice providers (APPs) can have a detrimental psychological and physical impact. Targeted interventions that focus on self-awareness, peer connection, and intentional self-care may reduce stress and improve well-being and professional fulfillment. Methods: This is a summative program evaluation of a two-day well-being retreat for physicians and APPs employed at a healthcare system headquartered in Florida. Led by mental health professionals in May 2022, this retreat combined facilitator-led workshops and experiential practice activities with opportunities for peer connection and designated time with family members. The retreat objectives were to facilitate social support, improve knowledge in areas of self-care, and build reflection skills that lead to intentional changes in well-being. Data collection occurred immediately before and after the intervention in May 2022. Wilcoxon Signed Ranks Tests were conducted to examine pre-post differences in the outcomes of self-reflection and insight, mindful self-care, anxiety, perceived stress, and professional fulfillment. Post-program feedback was collected, synthesized, and described. Results: Twenty-one clinicians attended the retreat, and a self-selected sample of twelve attendees participated in the evaluation portion of the project. Perceived stress significantly decreased (19.00 vs. 15.92; p = 0.01), and professional fulfillment significantly improved (15.50 vs. 17.50; p = 0.04) following the retreat. Participants reported the following benefits of the retreat: a reminder to focus on self-care, motivation for healthy behavior change, and an opportunity to self-reflect. Conclusion: Findings suggest that the retreat intervention met its objectives, and there is preliminary evidence that it may be a feasible approach to improve well-being and reduce stress in physicians and APPs. While significant changes in the practice environment are necessary to address the causes and consequences of work stress, individual-level programs remain important and relevant to the protection of well-being. This project builds upon the literature about interventions with diverse modalities

    Phases of QCD at High Baryon Density

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss how the quark masses and chemical potentials determine the structure of the superfluid quark phase. We comment on the possibility of kaon condensation at very high baryon density and study the competition between superfluid, density wave, and chiral crystal phases at intermediate density.Comment: 15 pages. To appear in the proceedings of the ECT Workshop on Neutron Star Interiors, Trento, Italy, June 200

    Bubble wall perturbations coupled with gravitational waves

    Get PDF
    We study a coupled system of gravitational waves and a domain wall which is the boundary of a vacuum bubble in de Sitter spacetime. To treat the system, we use the metric junction formalism of Israel. We show that the dynamical degree of the bubble wall is lost and the bubble wall can oscillate only while the gravitational waves go across it. It means that the gravitational backreaction on the motion of the bubble wall can not be ignored.Comment: 23 pages with 3 eps figure
    corecore