10,414 research outputs found

    Inclusion of explicit thermal requirements in optimum structural design

    Get PDF
    A finite-element based procedure is described for obtaining minimum mass designs of structures subjected to combined thermal and mechanical loading and both strength and thermal constraints. The procedure is based on a mathematical programming method using the Sequence of Unconstrained Minimizations Technique (SUMT) in which design requirements are incorporated by an exterior penalty function. The procedure is limited to steady-state temperatures which are controlled by structural sizing only. The optimization procedure is demonstrated by the design of a structural wing box with both mechanical loading and external heating, subject to design constraints on stress, minimum gage, and temperature. The final design for these conditions is compared with a corresponding design in which temperature constraints are omitted

    Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments

    Get PDF
    The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations

    Terminal-area flight procedures and route design for supersonic transport New York-transatlantic operations

    Get PDF
    The results of an analytical investigation of two departure and arrival transition procedures between John F. Kennedy International Airport and projected North Atlantic track systems for supersonic transport (SST) operations are presented. The procedures studied were: (1) separated departure and arrival transition routes with departures made at supersonic speeds, and (2) superimposed departure and arrival routes with departures restricted to subsonic speed until the airplane is on the track system. For both procedures, transition routes with intercept angles of 30 deg to 90 deg to both six-and four-track systems were investigated. Track spacings of 30 and 60 nautical miles were studied

    A fixed-base simulation study of two STOL aircraft flying curved, descending instrument approach paths

    Get PDF
    A real-time, fixed-base simulation study has been conducted to determine the curved, descending approach paths (within passenger-comfort limits) that would be acceptable to pilots, the flight-director-system logic requirements for curved-flight-path guidance, and the paths which can be flown within proposed microwave landing system (MLS) coverage angles. Two STOL aircraft configurations were used in the study. Generally, no differences in the results between the two STOL configurations were found. The investigation showed that paths with a 1828.8 meter turn radius and a 1828.8 meter final-approach distance were acceptable without winds and with winds up to at least 15 knots for airspeeds from 75 to 100 knots. The altitude at roll-out from the final turn determined which final-approach distances were acceptable. Pilots preferred to have an initial straight leg of about 1 n. mi. after MLS guidance acquisition before turn intercept. The size of the azimuth coverage angle necessary to meet passenger and pilot criteria depends on the size of the turn angle: plus or minus 60 deg was adequate to cover all paths execpt ones with a 180 deg turn

    Trapped particle flux models at NSSDC/WDC-A-R/S

    Get PDF
    The data needed in the future for trapped particle modeling are summarized. A short summary of past and future modeling activities and a list of satellite data that have not yet been considered in the modeling efforts is included

    Development of a Polysilicon Process Based on Chemical Vapor Deposition of Dichlorosilane in an Advanced Siemen's Reactor

    Get PDF
    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon

    A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    Get PDF
    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined

    Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant

    Full text link
    We report precise measurements of ground-state, λ\lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement by twenty-five-fold for the F' = 2 →\to F = 2 transition, yielding (1 667 358 996 ±\pm 4) Hz, and by ten-fold for the F' = 1 →\to F = 1 transition, yielding (1 665 401 803 ±\pm 12) Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Δα/α\Delta\alpha/\alpha over ∼\sim101010^{10} years.Comment: This version corrects minor typos in the Zeeman shift discussio

    On-the-fly memory compression for multibody algorithms.

    Get PDF
    Memory and bandwidth demands challenge developers of particle-based codes that have to scale on new architectures, as the growth of concurrency outperforms improvements in memory access facilities, as the memory per core tends to stagnate, and as communication networks cannot increase bandwidth arbitrary. We propose to analyse each particle of such a code to find out whether a hierarchical data representation storing data with reduced precision caps the memory demands without exceeding given error bounds. For admissible candidates, we perform this compression and thus reduce the pressure on the memory subsystem, lower the total memory footprint and reduce the data to be exchanged via MPI. Notably, our analysis and transformation changes the data compression dynamically, i.e. the choice of data format follows the solution characteristics, and it does not require us to alter the core simulation code
    • …
    corecore