456 research outputs found

    Results of Skylab medical experiment M171: Metabolic activity

    Get PDF
    The experiment was conducted to establish whether man's ability to perform mechanical work would be progressively altered as a result of exposure to the weightless environment of space flight. The Skylab crewmen exercised on a bicycle ergometer at workloads approximating 25, 50, and 75 percent of their maximum aerobic capacity. The physiological parameters monitored were respiratory gas exchange, blood pressure, and vectorcardiogram/heart rate. The results of these tests indicate that the crewmen had no significant decrement in their responses to exercise during their exposure to zero gravity. The results of the third manned Skylab mission (Skylab 4) are presented and a comparison is made of the overall results obtained from the three successively longer Skylab manned missions. The Skylab 4 crewmembers' 84-day in-flight responses to exercise were no worse and were probably better than the responses of the crewmen on the first two Skylab missions. Indications that exercise was an important contributing factor in maintaining this response are discussed

    Body Composition Measurement in Children with Cerebral Palsy, Spina Bifida and Spinal Cord Injury: A Systematic Review of the Literature

    Get PDF
    Pediatric obesity is a major health concern that has an increased prevalence in children with special needs. In order to categorize a child’s weight, an assessment of body composition is needed. Obtaining an accurate body composition measurement in children with special needs has many challenges associated with it. This perplexing scenario limits the provider’s ability to screen, prevent and treat an abnormal weight status in this vulnerable population. This systematic review summarizes common methods of body composition measurements, their strengths and limitations and reviews the literature when measurements were used in children with cerebral palsy, spina bifida and spinal cord injury. Following PRISMA guidelines, 222 studies were identified. The application of the inclusion and exclusion criteria yielded a final sample of nine studies included in this review. Overall, articles reinforced the inconsistencies of body composition measurement and methodology when used with children with special needs. Concerns include small sample sizes, the need to validate prediction equations for this population, and the lack of controlled trials and reporting of measurement methodology. Healthcare providers need to be aware of the complexities associated with measuring body composition in children with special needs and advocate for further testing of these measurements. Additional studies addressing the reliability and validity of these measures are needed to facilitate appropriate health promotion in children

    Pulmonary function evaluation during and following Skylab space flights

    Get PDF
    Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters

    Total Energy Expenditure and Body Composition of Children with Developmental Disabilities

    Get PDF
    Background Obesity prevalence is increased in children with developmental disabilities, specifically in children with spina bifida and Down syndrome. Energy expenditure, a critical aspect of weight management, has been extensively studied in the typically developing population, but not adequately studied in children with developmental disabilities. Objective Determine energy expenditure, fat-free mass and body fat percentile and the impact of these findings on recommended caloric intake in children with spina bifida and Down syndrome. Methods/Measures This pilot study included 36 children, 18 with spina bifida, 9 with Down syndrome and 9 typically developing children. Half of the children with spina bifida were non-ambulatory. Doubly labeled water was used to measure energy expenditure and body composition. Descriptive statistics described the sample and MANOVA and ANOVA methods were used to evaluate differences between groups. Results Energy expenditure was significantly less for children with spina bifida who primarily used a wheelchair (p = .001) and children with Down syndrome (p = .041) when compared to children without a disability when adjusted for fat-free mass. However, no significant difference was detected in children with spina bifida who ambulated without assistance (p = .072). Conclusions Children with spina bifida and Down syndrome have a significantly decreased energy expenditure which directly impacts recommended caloric intake. No significant difference was detected for children with spina bifida who ambulated, although the small sample size of this pilot study may have limited these findings. Validating these results in a larger study is integral to supporting successful weight management of these children

    Development of a Self‐Management Theory‐Guided Discharge Intervention for Parents of Hospitalized Children

    Get PDF
    Background Parents of hospitalized children, especially parents of children with complex and chronic health conditions, report not being adequately prepared for self‐management of their child\u27s care at home after discharge. Problem No theory‐based discharge intervention exists to guide pediatric nurses\u27 preparation of parents for discharge. Purpose To develop a theory‐based conversation guide to optimize nurses\u27 preparation of parents for discharge and self‐management of their child at home following hospitalization. Methods Two frameworks and one method influenced the development of the intervention: the Individual and Family Self‐Management Theory, Tanner\u27s Model of Clinical Judgment, and the Teach‐Back method. A team of nurse scientists, nursing leaders, nurse administrators, and clinical nurses developed and field tested the electronic version of a nine‐domain conversation guide for use in acute care pediatric hospitals. Conclusions The theory‐based intervention operationalized self‐management concepts, added components of nursing clinical judgment, and integrated the Teach‐Back method. Clinical Relevance Development of a theory‐based intervention, the translation of theoretical knowledge to clinical innovation, is an important step toward testing the effectiveness of the theory in guiding clinical practice. Clinical nurses will establish the practice relevance through future use and refinement of the intervention

    An imaging system for standardized quantitative analysis of C. elegans behavior

    Get PDF
    BACKGROUND: The nematode Caenorhabditis elegans is widely used for the genetic analysis of neuronal cell biology, development, and behavior. Because traditional methods for evaluating behavioral phenotypes are qualitative and imprecise, there is a need for tools that allow quantitation and standardization of C. elegans behavioral assays. RESULTS: Here we describe a tracking and imaging system for the automated analysis of C. elegans morphology and behavior. Using this system, it is possible to record the behavior of individual nematodes over long time periods and quantify 144 specific phenotypic parameters. CONCLUSIONS: These tools for phenotypic analysis will provide reliable, comprehensive scoring of a wide range of behavioral abnormalities, and will make it possible to standardize assays such that behavioral data from different labs can readily be compared. In addition, this system will facilitate high-throughput collection of phenotypic data that can ultimately be used to generate a comprehensive database of C. elegans phenotypic information. AVAILABILITY: The hardware configuration and software for the system are available from [email protected]

    The Atrial Fibrillation Risk Score for Hyperthyroidism Patients

    Full text link
    Thyrotoxicosis (TT) is associated with an increase in both total and cardiovascu-lar mortality. One of the main thyrotoxicosis risks is Atrial Fibrillation (AF). Right AF predicts help medical personal prescribe the correct medicaments and correct surgical or radioiodine therapy. The main goal of this study is creating a method for practical treatment and diagnostic AF. This study proposes a new method for assessing the risk of occurrence atrial fibrillation for patients with TT. This method considers both the features of the complication and the specifics of the chronic disease. A model is created based on case histories of patients with thyrotoxicosis. We used Machine Learning methods for creating several models. Each model has advantages and disadvantages depending on the diagnostic and medical purposes. The resulting models show high results in the different metrics of the prediction of AF. These models interpreted and simple for use. Therefore, models can be used as part of the support and decision-making system (DSS) by medical specialists in the treatment and diagnostic of AF

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure
    corecore