1,664 research outputs found
Angular dependence of Josephson currents in unconventional superconducting junctions
Josephson effect in junctions between unconventional superconductors is
studied theoretically within the model describing the effects of interface
roughness. The particularly important issue of applicability of the frequently
used Sigrist-Rice formula for Josephson current in d-wave superconductor /
insulator / d-wave superconductor junctions is addressed. We show that although
the SR formula is not applicable in the ballistic case, it works well for rough
interfaces when the diffusive normal metal regions exist between the d-wave
superconductor and the insulator. It is shown that the SR approach only takes
into account the component of the d-wave pair potential symmetric with respect
to an inversion around the plane perpendicular to the interface. Similar
formula can be derived for general unconventional superconductors with
arbitrary angular momentum l.Comment: 4 pages, 4 figure
Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces
In order to determine the key parameters that control the resistive switching
mechanism in metal-complex oxides interfaces, we have studied the electrical
properties of metal / YBa2Cu3O7-d (YBCO) interfaces using metals with different
oxidation energy and work function (Au, Pt, Ag) deposited by sputtering on the
surface of a YBCO ceramic sample. By analyzing the IV characteristics of the
contact interfaces and the temperature dependence of their resistance, we
inferred that ion migration may generate or cancel conducting filaments, which
modify the resistance near the interface, in accordance with the predictions of
a recent model.Comment: 3 pages, 5 figures, to be published in Physica B. Corresponding
author: C. Acha ([email protected]
Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)
We report crystallographic, specific heat, transport, and magnetic properties
of the recently discovered noncentrosymmetric 5d-electron superconductors
CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that
these superconductors are fully gapped. The upper critical fields are less than
1 T, consistent with limitation by conventional orbital depairing. High,
non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel
noncentrosymmetric physics, are not observed in these materials because the
high carrier masses required to suppress orbital depairing and reveal the
violated Pauli limit are not present.Comment: 8 pages, 8 figure
Imaging Oxygen Defects and their Motion at a Manganite Surface
Manganites are technologically important materials, used widely as solid
oxide fuel cell cathodes: they have also been shown to exhibit
electroresistance. Oxygen bulk diffusion and surface exchange processes are
critical for catalytic action, and numerous studies of manganites have linked
electroresistance to electrochemical oxygen migration. Direct imaging of
individual oxygen defects is needed to underpin understanding of these
important processes. It is not currently possible to collect the required
images in the bulk, but scanning tunnelling microscopy could provide such data
for surfaces. Here we show the first atomic resolution images of oxygen defects
at a manganite surface. Our experiments also reveal defect dynamics, including
oxygen adatom migration, vacancy-adatom recombination and adatom bistability.
Beyond providing an experimental basis for testing models describing the
microscopics of oxygen migration at transition metal oxide interfaces, our work
resolves the long-standing puzzle of why scanning tunnelling microscopy is more
challenging for layered manganites than for cuprates.Comment: 7 figure
A quantitative model for IcR product in d-wave Josephson junctions
We study theoretically the Josephson effect in d-wave superconductor /
diffusive normal metal /insulator/ diffusive normal metal/ d-wave
superconductor (D/DN/I/DN/D) junctions. This model is aimed to describe
practical junctions in high- cuprate superconductors, in which the product
of the critical Josephson current () and the normal state resistance ()
(the so-called product) is very small compared to the prediction
of the standard theory. We show that the product in D/DN/I/DN/D
junctions can be much smaller than that in d-wave superconductor / insulator /
d-wave superconductor junctions and formulate the conditions necessary to
achieve large product in D/DN/I/DN/D junctions. The proposed
theory describes the behavior of products quantitatively in
high- cuprate junctions.Comment: 4 pages, 6 figure
Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc
We present spectroscopic observations of red giant branch (RGB) stars in the
Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck
II 10-m telescope. The three fields targeted in this study are in the M31
spheroid, outer disk, and giant southern stream. In this paper, we focus on the
kinematics and chemical composition of RGB stars in the stream field located at
a projected distance of R = 20 kpc from M31's center. A mix of stellar
populations is found in this field. M31 RGB stars are isolated from Milky Way
dwarf star contaminants using a variety of spectral and photometric
diagnostics. The radial velocity distribution of RGB stars displays a clear
bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v
= -417 km/s -- along with an underlying broad component that is presumably
representative of the smooth spheroid of M31. Both peaks are found to be
dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The
mean metallicity and metallicity dispersion of stars in the two peaks is also
found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed
velocity of the primary peak is consistent with that predicted by dynamical
models for the stream, but there is no obvious explanation for the secondary
peak. The nature of the secondary cold population is unclear: it may represent:
(1) tidal debris from a satellite merger event that is superimposed on, but
unrelated to, the giant southern stream; (2) a wrapped around component of the
giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc
(this component is well above the outward extrapolation of the smooth
exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor
The tunneling characteristics of planar junctions between a normal metal and
a non-centrosymmetric superconductor like CePt3Si are examined. It is shown
that the superconducting phase with mixed parity can give rise to
characteristic zero-bias anomalies in certain junction directions. The origin
of these zero-bias anomalies are Andreev bound states at the interface. The
tunneling characteristics for different directions allow to test the structure
of the parity-mixed pairing state.Comment: 4 pages, 3 figure
Magnetic Ground State of PrLaCeCuO with Varied Oxygen Depletion Probed by Muon Spin Relaxation
The magnetic ground state of an electron-doped cuprate superconductor
PrLaCeCuO () has been
studied by means of muon spin rotation/relaxation (\msr) over a wide variety of
oxygen depletion, . Appearance of weak random magnetism
over entire crystal volume has been revealed by a slow exponential relaxation.
The absence of -dependence for the random magnetism and the multiplet
pattern of muon Knight shift at higher fields strongly suggest that the random
moments are associated with excited Pr ions under crystal electric
field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp
SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex
DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy between modest evidence in genetics and strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report on the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where the small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell-biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex
- …