1,664 research outputs found

    Angular dependence of Josephson currents in unconventional superconducting junctions

    Get PDF
    Josephson effect in junctions between unconventional superconductors is studied theoretically within the model describing the effects of interface roughness. The particularly important issue of applicability of the frequently used Sigrist-Rice formula for Josephson current in d-wave superconductor / insulator / d-wave superconductor junctions is addressed. We show that although the SR formula is not applicable in the ballistic case, it works well for rough interfaces when the diffusive normal metal regions exist between the d-wave superconductor and the insulator. It is shown that the SR approach only takes into account the component of the d-wave pair potential symmetric with respect to an inversion around the plane perpendicular to the interface. Similar formula can be derived for general unconventional superconductors with arbitrary angular momentum l.Comment: 4 pages, 4 figure

    Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces

    Get PDF
    In order to determine the key parameters that control the resistive switching mechanism in metal-complex oxides interfaces, we have studied the electrical properties of metal / YBa2Cu3O7-d (YBCO) interfaces using metals with different oxidation energy and work function (Au, Pt, Ag) deposited by sputtering on the surface of a YBCO ceramic sample. By analyzing the IV characteristics of the contact interfaces and the temperature dependence of their resistance, we inferred that ion migration may generate or cancel conducting filaments, which modify the resistance near the interface, in accordance with the predictions of a recent model.Comment: 3 pages, 5 figures, to be published in Physica B. Corresponding author: C. Acha ([email protected]

    Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)

    Get PDF
    We report crystallographic, specific heat, transport, and magnetic properties of the recently discovered noncentrosymmetric 5d-electron superconductors CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that these superconductors are fully gapped. The upper critical fields are less than 1 T, consistent with limitation by conventional orbital depairing. High, non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel noncentrosymmetric physics, are not observed in these materials because the high carrier masses required to suppress orbital depairing and reveal the violated Pauli limit are not present.Comment: 8 pages, 8 figure

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    A quantitative model for IcR product in d-wave Josephson junctions

    Get PDF
    We study theoretically the Josephson effect in d-wave superconductor / diffusive normal metal /insulator/ diffusive normal metal/ d-wave superconductor (D/DN/I/DN/D) junctions. This model is aimed to describe practical junctions in high-TCT_C cuprate superconductors, in which the product of the critical Josephson current (ICI_C) and the normal state resistance (RR) (the so-called ICRI_{\rm C}R product) is very small compared to the prediction of the standard theory. We show that the ICRI_{\rm C}R product in D/DN/I/DN/D junctions can be much smaller than that in d-wave superconductor / insulator / d-wave superconductor junctions and formulate the conditions necessary to achieve large ICRI_{\rm C}R product in D/DN/I/DN/D junctions. The proposed theory describes the behavior of ICRI_{\rm C}R products quantitatively in high-TCT_{\rm C} cuprate junctions.Comment: 4 pages, 6 figure

    Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc

    Full text link
    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R = 20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v = -417 km/s -- along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent: (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor

    Full text link
    The tunneling characteristics of planar junctions between a normal metal and a non-centrosymmetric superconductor like CePt3Si are examined. It is shown that the superconducting phase with mixed parity can give rise to characteristic zero-bias anomalies in certain junction directions. The origin of these zero-bias anomalies are Andreev bound states at the interface. The tunneling characteristics for different directions allow to test the structure of the parity-mixed pairing state.Comment: 4 pages, 3 figure

    Magnetic Ground State of Pr0.89_{0.89}LaCe0.11_{0.11}CuO4+αδ_{4+\alpha-\delta} with Varied Oxygen Depletion Probed by Muon Spin Relaxation

    Full text link
    The magnetic ground state of an electron-doped cuprate superconductor Pr1x_{1-x}LaCex_xCuO4+αδ_{4+\alpha-\delta} (x=0.11,α0.04x=0.11, \alpha\simeq0.04) has been studied by means of muon spin rotation/relaxation (\msr) over a wide variety of oxygen depletion, 0.03δ0.120.03\le\delta\le0.12. Appearance of weak random magnetism over entire crystal volume has been revealed by a slow exponential relaxation. The absence of δ\delta-dependence for the random magnetism and the multiplet pattern of muon Knight shift at higher fields strongly suggest that the random moments are associated with excited Pr3+^{3+} ions under crystal electric field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp

    SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex

    Get PDF
    DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy between modest evidence in genetics and strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report on the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where the small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell-biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex
    corecore