395 research outputs found

    Localizability of Wireless Sensor Networks: Beyond Wheel Extension

    Full text link
    A network is called localizable if the positions of all the nodes of the network can be computed uniquely. If a network is localizable and embedded in plane with generic configuration, the positions of the nodes may be computed uniquely in finite time. Therefore, identifying localizable networks is an important function. If the complete information about the network is available at a single place, localizability can be tested in polynomial time. In a distributed environment, networks with trilateration orderings (popular in real applications) and wheel extensions (a specific class of localizable networks) embedded in plane can be identified by existing techniques. We propose a distributed technique which efficiently identifies a larger class of localizable networks. This class covers both trilateration and wheel extensions. In reality, exact distance is almost impossible or costly. The proposed algorithm based only on connectivity information. It requires no distance information

    Enhancing Biometric-Capsule-based Authentication and Facial Recognition via Deep Learning

    Get PDF
    In recent years, developers have used the proliferation of biometric sensors in smart devices, along with recent advances in deep learning, to implement an array of biometrics-based authentication systems. Though these systems demonstrate remarkable performance and have seen wide acceptance, they present unique and pressing security and privacy concerns. One proposed method which addresses these concerns is the elegant, fusion-based BioCapsule method. The BioCapsule method is provably secure, privacy-preserving, cancellable and flexible in its secure feature fusion design. In this work, we extend BioCapsule to face-based recognition. Moreover, we incorporate state-of-art deep learning techniques into a BioCapsule-based facial authentication system to further enhance secure recognition accuracy. We compare the performance of an underlying recognition system to the performance of the BioCapsule-embedded system in order to demonstrate the minimal effects of the BioCapsule scheme on underlying system performance. We also demonstrate that the BioCapsule scheme outperforms or performs as well as many other proposed secure biometric techniques

    Overexpression of Crithidia fasciculata

    Full text link

    Hapln1b, a central organizer of the ECM, modulates kit signaling to control developmental hematopoiesis in zebrafish

    Get PDF
    During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced in hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand to the fetal liver and the caudal hematopoietic tissue, in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta must be degraded to enable HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. In this study, hapln1b, a key component of the ECM, was specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is necessary, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, the expression of hapln1b was necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modeling, we showed that kitlgb interacts with the ECM to specify HSPCs. The findings show that the ECM is an integral component of the microenvironment and mediates the cytokine signaling that is necessary for HSPC specification

    Longitudinal and transversal piezoresistive response of granular metals

    Full text link
    In this paper, we study the piezoresistive response and its anisotropy for a bond percolation model of granular metals. Both effective medium results and numerical Monte Carlo calculations of finite simple cubic networks show that the piezoresistive anisotropy is a strongly dependent function of bond probability p and of bond conductance distribution width \Delta g. We find that piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue that a measurement of the piezoresistive anisotropy could be a sensitive tool to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure

    Density of States and Conductivity of Granular Metal or Array of Quantum Dots

    Full text link
    The conductivity of a granular metal or an array of quantum dots usually has the temperature dependence associated with variable range hopping within the soft Coulomb gap of density of states. This is difficult to explain because neutral dots have a hard charging gap at the Fermi level. We show that uncontrolled or intentional doping of the insulator around dots by donors leads to random charging of dots and finite bare density of states at the Fermi level. Then Coulomb interactions between electrons of distant dots results in the a soft Coulomb gap. We show that in a sparse array of dots the bare density of states oscillates as a function of concentration of donors and causes periodic changes in the temperature dependence of conductivity. In a dense array of dots the bare density of states is totally smeared if there are several donors per dot in the insulator.Comment: 13 pages, 15 figures. Some misprints are fixed. Some figures are dropped. Some small changes are given to improve the organizatio

    Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification

    Get PDF
    In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods

    A Survey on Biometrics and Cancelable Biometrics Systems

    Get PDF
    Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results

    Phonon and Elastic Instabilities in MoC and MoN

    Full text link
    We present several results related to the instability of MoC and MoN in the B1 (sodium chloride) structure. These compounds were proposed as potential superconductors with moderately high transition temperatures. We show that the elastic instability in B1-structure MoN, demonstrated several years ago, persists at elevated pressures, thus offering little hope of stabilizing this material without chemical doping. For MoC, another material for which stoichiometric fabrication in the B1-structure has not proven possible, we find that all of the cubic elastic constants are positive, indicating elastic stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as well), further illustrating the rich behavior of carbo-nitride materials. We also present additional electronic structure results for several transition metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in the properties of these materials. Deviations from strict electron counting dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
    corecore