23 research outputs found

    Extracellular GABA waves regulate coincidence detection in excitatory circuits

    Get PDF
    Acknowledgements This study was supported by the Wellcome Trust Principal Fellowship (212251_Z_18_Z), ERC Advanced Grant (323113), and European Commission NEUROTWIN grant (857562) to DAR; University of Edinburgh Chancellor's Fellowship to SS.Peer reviewedPublisher PD

    Retrograde Synaptic Signaling Mediated by K+ Efflux through Postsynaptic NMDA Receptors

    Get PDF
    SummarySynaptic NMDA receptors (NMDARs) carry inward Ca2+ current responsible for postsynaptic signaling and plasticity in dendritic spines. Whether the concurrent K+ efflux through the same receptors into the synaptic cleft has a physiological role is not known. Here, we report that NMDAR-dependent K+ efflux can provide a retrograde signal in the synapse. In hippocampal CA3-CA1 synapses, the bulk of astrocytic K+ current triggered by synaptic activity reflected K+ efflux through local postsynaptic NMDARs. The local extracellular K+ rise produced by activation of postsynaptic NMDARs boosted action potential-evoked presynaptic Ca2+ transients and neurotransmitter release from Schaffer collaterals. Our findings indicate that postsynaptic NMDAR-mediated K+ efflux contributes to use-dependent synaptic facilitation, thus revealing a fundamental form of retrograde synaptic signaling

    Central synapses release a resource-efficient amount of glutamate.

    Get PDF
    Why synapses release a certain amount of neurotransmitter is poorly understood. We combined patch-clamp electrophysiology with computer simulations to estimate how much glutamate is discharged at two distinct central synapses of the rat. We found that, regardless of some uncertainty over synaptic microenvironment, synapses generate the maximal current per released glutamate molecule while maximizing signal information content. Our result suggests that synapses operate on a principle of resource optimization

    Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network

    Get PDF
    Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks

    Spike-Driven Glutamate Electrodiffusion Triggers Synaptic Potentiation via a Homer-Dependent mGluR-NMDAR Link

    Get PDF
    SummaryElectric fields of synaptic currents can influence diffusion of charged neurotransmitters, such as glutamate, in the synaptic cleft. However, this phenomenon has hitherto been detected only through sustained depolarization of large principal neurons, and its adaptive significance remains unknown. Here, we find that in cerebellar synapses formed on electrically compact granule cells, a single postsynaptic action potential can retard escape of glutamate released into the cleft. This retardation boosts activation of perisynaptic group I metabotropic glutamate receptors (mGluRs), which in turn rapidly facilitates local NMDA receptor currents. The underlying mechanism relies on a Homer-containing protein scaffold, but not GPCR- or Ca2+-dependent signaling. Through the mGluR-NMDAR interaction, the coincidence between a postsynaptic spike and glutamate release triggers a lasting enhancement of synaptic transmission that alters the basic integrate-and-spike rule in the circuitry. Our results thus reveal an electrodiffusion-driven synaptic memory mechanism that requires high-precision coincidence detection suitable for high-fidelity circuitries

    Glutamateā€“Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors

    Get PDF
    Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the ā€˜averageā€™ morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamateā€“transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain

    Glutamateā€“Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors

    No full text
    Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the ā€˜averageā€™ morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamateā€“transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain

    Increased Extrasynaptic Glutamate Escape in Stochastically Shaped Probabilistic Synaptic Environment

    Get PDF
    Excitatory synapses in the brain are often surrounded by nanoscopic astroglial processes that express high-affinity glutamate transporters at a high surface density. This ensures that the bulk of glutamate leaving the synaptic cleft is taken up for its subsequent metabolic conversion and replenishment in neurons. Furthermore, variations in the astroglial coverage of synapses can thus determine to what extent glutamate released into the synaptic cleft could activate its receptors outside the cleft. The biophysical determinants of extrasynaptic glutamate actions are complex because they involve a competition between transporters and target receptors of glutamate in the tortuous space of synaptic environment. To understand key spatiotemporal relationships between the extrasynaptic landscapes of bound and free glutamate, we explored a detailed Monte Carlo model for its release, diffusion, and uptake. We implemented a novel representation of brain neuropil in silico as a space filled with randomly scattered, overlapping spheres (spheroids) of distributed size. The parameters of perisynaptic space, astroglial presence, and glutamate transport were constrained by the empirical data obtained for the ‘average’ environment of common cortical synapses. Our simulations provide a glimpse of the perisynaptic concentration landscapes of free and transporter-bound glutamate relationship, suggesting a significant tail of space-average free glutamate within 3 ms post-release
    corecore