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SUMMARY

Synaptic NMDA receptors (NMDARs) carry inward
Ca2+ current responsible for postsynaptic signaling
and plasticity in dendritic spines. Whether the con-
current K+ efflux through the same receptors into
the synaptic cleft has a physiological role is not
known. Here, we report that NMDAR-dependent K+

efflux can provide a retrograde signal in the synapse.
In hippocampal CA3-CA1 synapses, the bulk of
astrocytic K+ current triggered by synaptic activity
reflected K+ efflux through local postsynaptic
NMDARs. The local extracellular K+ rise produced
by activation of postsynaptic NMDARs boosted
action potential-evoked presynaptic Ca2+ transients
and neurotransmitter release from Schaffer collat-
erals. Our findings indicate that postsynaptic
NMDAR-mediated K+ efflux contributes to use-
dependent synaptic facilitation, thus revealing a
fundamental form of retrograde synaptic signaling.
INTRODUCTION

Activity-dependent regulation of synaptic transmission often

involvesbothpre andpostsynaptic cells releasing neurotransmit-

ters and neuromodulators. At central excitatory synapses,

released glutamate can modulate presynaptic activity by target-

ing presynaptic metabotropic glutamate receptors (mGluRs)

(Gereau and Conn, 1995), kainate receptors (Contractor et al.,

2011), and, at least in developing tissue, NMDA receptors

(NMDARs) (Corlewet al., 2007;McGuinness et al., 2010). Another

common regulatory mechanism involves the activity-dependent

release of retrogrademessengers from the postsynaptic neuron,

including endocannabinoids, growth factors, nitric oxide, and

conventional neurotransmitters (reviewed in Regehr et al.,

2009). However, these mechanisms rely on organic signaling

molecules, and the impact of activity-dependent ionic changes

within the narrow synaptic cleft has receivedmuch less attention.
Ce
For example, activation of postsynaptic NMDARs could prompt

partial extracellular Ca2+ depletion, thus reducing, at least for a

very brief period of time, synaptic release probability at hippo-

campal CA3-CA1 synapses (Rusakov and Fine, 2003). Local

extracellular K+ can rise both during action potentials (APs) and

during excitatory postsynaptic potentials (EPSPs) (Ge and

Duan, 2007; Nicholson et al., 1978; Poolos et al., 1987; Prince

et al., 1973), with its average concentration growing 2-fold during

intense neuronal discharges (Krnjevi�c et al., 1982). Although dur-

ing moderate physiological activity external K+ increases rarely

exceed 0.2–0.4 mM, these commonly reported values are aver-

aged over space and time. In fact, K+ elevations in the local vicin-

ity of K+ sources, such as K+-permeable receptors and channels,

could theoretically attain much higher levels. These hot spots of

extracellular K+ could potentially occur in the synaptic cleft,

thus affecting synaptic function. In this study, we explore hippo-

campal circuitry to test this hypothesis.Wefind that postsynaptic

NMDARs are amajor source of K+ in the synaptic cleft that affects

presynaptic release probability, thus suggesting an additional

form of retrograde synaptic signaling.

RESULTS

Activation of Postsynaptic NMDARs Produces Local K+

Elevations
K+ released during network activity is cleared mainly through

astrocytic electrogenic uptake (Walz, 2000). We therefore moni-

tored extracellular K+ dynamics by recording astrocytic currents

in response to electrical stimulation of Schaffer collaterals in

murine hippocampal slices (Figures 1A and 1B). In the presence

of GABAA, GABAB, mGluR, and AMPA receptor (AMPAR) antag-

onists, stimulation triggered a biphasic inward current. The fast

component of this current represents glutamate uptake, whereas

its slow component reflects K+ influx (Bergles and Jahr, 1997).

Indeed, bath application of 200 mM BaCl2, which blocks inward

rectifier K+ channel, strongly inhibited the slow current compo-

nent (hereafter termed IK; 85 ± 25.6 pA for control [Ctrl], 7 ±

1.7 pA for BaCl2, n = 5; p < 0.05, Wilcoxon signed-rank test; Fig-

ure 1B). The fast component was suppressed by the glutamate

transporter inhibitor DL-threo-b-benzyloxyaspartic acid (TBOA;
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Figure 1. Postsynaptic NMDARs Mediate K+ Efflux

(A) Recording from ‘‘passive’’ astrocyte in hippocampal slice is presented. Top view shows the astrocyte loaded with fluorescent dye Alexa Fluor 594 through the

patch pipette, through which depolarizing pulses were delivered. Bottom view shows linear I–V curve, characteristic to ‘‘passive’’ astrocyte.

(B) Left view shows that BaCl2 blocked the slow component (IK) of the synaptically induced current in astrocytes. Right view shows that TBOA blocked the fast

component (IGluT). Top views are sample traces in Ctrl (black) and in drug (red). Gray vertical bar indicates the time point where the corresponding current was

measured. Bottom views are summary plots.

(C) Synaptically induced Ik is suppressed by APV. Top view is sample traces in Ctrl (black), in APV (red) and in BaCl2 (blue). Bottom view is summary plot of

consecutive APV and BaCl2 applications on IK.

(D) Ik induced by L-glutamate puff was suppressed byMK801. Top view is sample traces in Ctrl (black) andMK801 (red). Bottom view is a summary plot of MK801

effect on IK.

(E) Ik induced byNMDApuff was suppressed either by APV or BaCl2. Top view is sample traces in Ctrl (black), APV (red), andBaCl2 (blue). Bottom view is summary

plots of APV and BaCl2 effects on IK.

(F) Ca2+ removal (Ca2+-free) suppresses synaptic transmission. Top view is fEPSP in Ctrl (black) and in Ca2+-free solution (red). Bottom view is summary plots.

(G) There was no significant effect of Ca2+ removal on IK induced by NMDA puff. Top view is sample traces in Ctrl (black) and Ca2+-free solution (red). Bottom view

is summary plot.

(H) Effects of consecutive APV and NBQX applications on fEPSP and IK were recorded simultaneously. Top view is sample traces in Ctrl (black), APV (red), and

NBQX (blue). Bottom view is summary plots.

(I) Reduced effect of APV on synaptically induced IK in CA1-GluN1 KOmice compared to Ctrl mice is shown. Top views are sample traces in Ctrl (black) and APV

(red). Bottom views are summary plots of APV effect in CA1-GluN1 KO and Ctrl mice.

Columns represent the mean, circles the individual slices. Error bars, SEM. Not significant (NS) p > 0.05, *p < 0.05, and **p < 0.01. Arrows indicate synaptic

stimulation. Horizontal black bars next to sample traces represent the agonist puff.

See also Figure S1.
50 mM) (IGluT: 117 ± 23.2 pA for Ctrl and 58 ± 16.9 pA for TBOA,

n = 5; p < 0.05, Wilcoxon signed-rank test; Figure 1B). Surpris-

ingly, the Ba2+-sensitive IK was also significantly suppressed by

APV (50 mM), a NMDAR antagonist (69% ± 9.4% peak reduction,

n = 5; p < 0.05, Wilcoxon signed-rank test; Figure 1C). GluN1

subunits, which are required for functional NMDARs, are not

expressed in hippocampal astrocytes (Krebs et al., 2003), indi-

cating that this portion of IK is mediated by neuronal NMDARs.

This IK suppression was not due to the reduced recruitment of
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afferent Schaffer collaterals because APV had no significant

effect on the presynaptic fiber volley (PrV; 105% ± 3.8% of Ctrl,

n = 15; p = 0.52, Wilcoxon signed-rank test; Figure S1). Further-

more, in the presence of tetrodotoxin (TTX; 1 mM, Na+ channel

blocker), puff application of glutamate (400 mM) produced a

biphasic current with the slow component abolished by MK801

(10 mM), another NMDAR antagonist (DIK: 90% ± 4.8% peak

reduction, n = 5; p < 0.05, Wilcoxon signed-rank test; Figure 1D).

Finally, puff application of NMDA (1 mM), a nontransported



Figure 2. Model of K+ Dynamics in the Syn-

aptic Cleft

(A) Simulated time course of K+ concentration [K+]o
inside the synaptic cleft is shown. Black traces

indicate the time course in the center of the cleft,

red at 150 nm from the center, and blue at 300 nm

from the center. See Experimental Procedures for

modeling details. Left column of the graphs is

simulation at an RMP of �70 mV, right column is

simulation at a RMP of 0 mV. Top row shows

synapse containing 50 AMPARs, middle contain-

ing 20 NMDARs, and bottom containing 50

AMPAR and 20 NMDARs. Inset is the schematics

of the model synapse.

(B) The maximum [K+]o at the center of synaptic

cleft was simulated for synapses with different re-

ceptor content (white circles indicate 50 AMPARs,

gray circles 20 NMDARs, and black circles 50

AMPARs and 20 NMDARs) at different RMPs.

(C) The total number of K+ ions passing through

NMDARs and AMPARs during EPSC depending

on RMP is shown. Notations are the same as in (B).

(D) Peak conductance of 20 NMDARs and 50

AMPARs at different RMP is presented. Notations

are the same as in (B).
NMDAR agonist, induced a single-phase, Ba2+-sensitive IK that

was blocked by APV (DIK: 94% ± 1.9% peak reduction by APV,

n = 3; DIK: 90% ± 4.8% peak reduction by Ba2+, n = 5; p <

0.05, Wilcoxon signed-rank test; Figure 1E). Taken together,

these results indicate that a substantial component of astrocytic

IK was due to activation of neuronal NMDARs.

Although NMDARs are permeable to K+ (Ichinose et al., 2003),

Ca2+ influx through these receptors also can activate Ca2+-

dependent K+ (KCa) channels (Ngo-Anh et al., 2005), and in

addition, the depolarizing action of NMDARs can engage

voltage-dependent K+ (KV) channels (Qiu et al., 2007). We first

tested the contribution of KCa to IK (in these experiments, synap-

tic receptors were left unblocked). Removal of extracellular Ca2+

abolished field EPSPs (fEPSPs; 3% ± 6.9% of Ctrl, n = 4; Fig-

ure 1F) but had no significant effect on IK induced by a puff of

1 mMNMDA (IK: 117% ± 14.2% of Ctrl, n = 5; p = 0.31, Wilcoxon

signed-rank test; Figure 1G), arguing against a significant contri-

bution of KCa channels. Second, if NMDARs activate KV channels

via postsynaptic depolarization, IK should vary consistently with

fEPSPs. To test this, we performed simultaneous astrocyte and

fEPSP recordings. As expected, fEPSPs depended mainly on

AMPAR activation (blocking NMDARs with APV decreased the

fEPSP amplitude only to 83% ± 4.6% of Ctrl; this current was

effectively abolished by subsequent application of 25 mM

NBQX, AMPAR antagonist; 2% ± 4.9% of Ctrl, n = 5; p = 0.19

for APV effect and p < 0.05 for NBQX effect, Wilcoxon signed-

rank test; Figure 1H). In striking contrast, blocking NMDARs

with APV suppressed astrocytic IK substantially (IK decreased

to 38% ± 8.0% of Ctrl, n = 5; p < 0.05, Wilcoxon signed-rank

test; Figure 1H). If depolarization were to directly translate to
Cell Reports 5, 941–951, N
K+ efflux through activation of KV chan-

nels, then both fEPSP and IK would be

decreased proportionately. Thus, these
results suggest that NMDAR-dependent depolarization per se

provides only a minor, if any, contribution to the NMDAR-

mediated K+ efflux. Notably, subsequent addition of NBQX re-

sulted in further reduction of IK (IK: 12% ± 5.9% of ctrl, n = 5;

p < 0.05 for difference with APV effect, Wilcoxon signed-rank

test; Figure 1H).

We next asked if the NMDARs responsible for the K+ efflux are

located pre- or postsynaptically, by taking advantage of a trans-

genic mouse line (CA1-GluN1 knockout [KO]) that conditionally

deletes GluN1 in a large proportion of postsynaptic CA1 pyra-

midal neurons, but not in presynaptic CA3 pyramidal neurons

(Tsien et al., 1996). Consistent with the predominant contribution

of postsynaptic NMDARs in raising intracleft K+, IK induced by

afferent stimulation was almost three times less sensitive to

APV in the KO animals (IK, 16% ± 6.6% reduction; n = 6) than

in Ctrl littermates (IK: 44% ± 2.7% reduction, n = 6; p < 0.01 for

difference with CA1-GluN1 KO, unpaired t test, single tailed;

AMPARs were left unblocked, which could explain additional

K+ efflux in these experiments, Figure 1I).

K+ Dynamics in the Synaptic Cleft
Therefore, our results are consistent with the notion that K+

efflux during synaptic signaling was mediated by both NMDARs

and AMPARs (Bergles and Jahr, 1997; Ge and Duan, 2007).

However, despite the larger number of AMPARs per synapse,

the contribution of NMDARs to K+ efflux could be greater

because of their longer open times. To test this theoretically,

we investigated K+ dynamics in synaptic cleft using a previously

tested realistic model of intracleft diffusion at CA3-CA1 synap-

ses (Figure 2A) (Savtchenko and Rusakov, 2007; Savtchenko
ovember 27, 2013 ª2013 The Authors 943



Figure 3. Activity Dependence of NMDARs

Mediated K+ Efflux

(A) Mg2+ removal enhanced IK induced either by

electrical stimulation (left) or NMDApuff (right). Top

views are sample traces in Ctrl (black) and in

0-Mg2+ (red), Bottom views are summary plots.

(B andC) NMDAR-dependent supralinear increase

of IK with one, three, and five stimuli at 50 Hz is

shown. Top views are sample traces in Ctrl

(B, black) and in APV (C, red), Bottom views are

summary plots. Dashed line indicates linear sum.

(D) Top view is a schematic showing electrodes’

positions for SS, AS, extracellular field potential

recording, and astrocytic IK recording. Bottom

view is sample traces of field potential recordings

in response to SS (fEPSP) and AS (antidromic

population spike). Synaptic receptor blockers

suppressed fEPSP, but not antidromic population

spike.

(E) Pairing of SS (three stimuli, 50 Hz) and AS (three

stimuli, 50 Hz) produced supralinear summation

of IK. Top views are sample traces of IK in response

to SS, AS, arithmetic sum, and pairing (blue).

Bottomviewsare summary plots inCtrl and inAPV.

Columns represent the mean, circles the indi-

vidual slices. Error bars, SEM. NS p > 0.05 and

*p < 0.05. Arrows indicate electrical stimulation.

Horizontal black bars indicate agonist puff.

See also Figure S2.
et al., 2013). The model incorporated a 200 nm wide postsyn-

aptic density containing 50 AMPARs and/or 20 NMDARs. The

key parameter of simulations, i.e., the number of GluN1-contain-

ing NMDARs, was experimentally estimated at 394 particles/mm2

in a separate study by counting the average density of postsyn-

aptic receptors immunolabeled in SDS-digested freeze fracture

replica labeling (SDS-FRL, see sections below for details). We

investigated K+ dynamics inside the synaptic cleft following

release of 3,000 glutamate molecules (Savtchenko et al.,

2013), mimicking conditions of the current clamp. When the

cell was initially at a Vm of �70 mV, the activation of local

AMPARs alone produced a larger peak increase in the intracleft

K+ compared to NMDARs (Figures 2A and 2B). However,

integrated K+ efflux was similar for AMPAR and NMDAR activa-

tion because of the prolonged activation time course of NMDARs

(Figure 2C). This scenario changed dramatically upon postsyn-

aptic depolarization that relieved the Mg2+ block of NMDARs.

When basal Vm was set to zero, the number of NMDARs acti-

vated during glutamate release sharply increased, boosting local

K+ efflux orders of magnitude (Figure 2D). This result suggests

that postsynaptic cell depolarization during repetitive activation
944 Cell Reports 5, 941–951, November 27, 2013 ª2013 The Authors
could lead to substantial NMDAR-depen-

dent K+ elevation in the synaptic cleft.

NMDAR-Mediated K+ Efflux
Depends on Activity of the
Postsynaptic Cell
The model predicts that removal

of voltage-dependent Mg2+ block of

NMDARs should substantially enhance
K+ efflux, and in physiological conditions, this block is at least

partly relieved through AMPAR-dependent local EPSP. Never-

theless, removal of extracellular Mg2+ increased both the IK
induced by either electrical stimulation of Schaffer collaterals

(to 346% ± 118.5% of Ctrl, n = 5; p < 0.05, Wilcoxon signed-

rank test; Figure 3A) or a NMDA puff (to 256% ± 30% of Ctrl,

n = 5; p < 0.05, Wilcoxon signed-rank test; Figure 3A). We tested

whether progressively boosting postsynaptic depolarization by

repetitive cell excitation could have a similar effect. We found

that during brief bursts of synaptic discharges, the IK amplitude

increased dramatically: 5.6 ± 1.2 times with three stimuli and

10.6 ± 2.3 times with five stimuli (n = 9; p = 0.02 for difference

with linear sum for three stimuli and p = 0.01 for five stimuli,

Wilcoxon signed-rank test; Figure 3B). This large supralinear

enhancement was completely blocked by APV (normalized

amplitude of IK was 3.1 ± 0.2 with three stimuli and 4.9 ± 0.4

with five stimuli, n = 6; p = 0.34 for difference with linear sum

for three stimuli and p = 0.57 for five stimuli, Wilcoxon signed-

rank test, Figure 3C), suggesting that it indeed requiresNMDARs.

Because NMDARs can also be unblocked, albeit only briefly,

by bAPs (Schiller et al., 1998; Wu et al., 2012), we tested if



bAPs enhance IK in response to stimulation of Schaffer collat-

erals (SS). bAPs were induced by antidromic stimulation (AS)

with an extracellular electrode placed on the border between

str.oriens and alveus (Figure 3D). In the absence of synaptic re-

ceptor blockers, SS induced a fEPSP, whereas AS induced

antidromic population spike. This fEPSP was suppressed by a

cocktail of AMPA,mGluR, andGABA receptor blockers, whereas

the antidromic population spike remained. SS (33 50Hz) and AS

(33 50 Hz) were delivered first separately, then paired. The pair-

ing of SS and AS produced an IK that was significantly larger

than the arithmetic sum of the IK produced by SS and AS alone:

IK(pairing) was 129% ± 12.6% of IK(sum) (n = 5; p < 0.05,

Wilcoxon signed-rank test; Figure 3E). The enhancement of IK
by pairing was abolished by APV: 99.8% ± 4.5% of IK(sum) (p =

0.50,Wilcoxon signed-rank test; Figure 3E). Thus, depolarization

of the postsynaptic cell by bAP can boost NMDAR-mediated K+

efflux. This may be an important mechanism that aids synaptic

depolarization (e.g., when only single synapse is activated; see

below). However, if depolarization ismediated bymultiple synap-

ses, the coinciding EPSPandbAPmay not necessarily produce a

supralinear increase in K+ efflux due to occlusion (e.g., multisy-

naptic EPSP can trigger APs by themselves). Indeed, this was

the case when we repeated the pairing experiment without

blocking synaptic receptors (Figure S2). Taken together, these

results indicate that K+ efflux through NMDARs is significantly

boosted by postsynaptic activity.

NMDAR-Mediated K+ Efflux Enhances Presynaptic Ca2+

Entry
Although our data suggest that K+ efflux has no significant effect

on the Schaffer collateral fiber volley (Figure S1), this does not

rule out its local depolarizing effects on presynaptic boutons.

The depolarization-dependent widening of local presynaptic

APs in the boutons could lead to increases in presynaptic Ca2+

entry (Geiger and Jonas, 2000; Hori and Takahashi, 2009; Sasaki

et al., 2011). To test if this is the case, we used two-photon Ca2+

imaging in axonal boutons of CA3 pyramidal neurons loadedwith

50 mM Ca2+-insensitive dye Alexa Fluor 594 and 200 mM Ca2+-

sensitive Fluo-5F, as described recently by Sylantyev et al.

(2013) (Figures 4A and 4B). The Ca2+ transients were induced

by APs that were triggered in soma by brief current injections

and were recorded as the change in the Ca2+-sensitive G chan-

nel fluorescence over Ca2+-insensitive R channel fluorescence

level (DG/R). The experiments were performed in the absence

of all blockers. To minimize the effects of slow dye equilibration

across long axons, recordings with pharmacological treatments

were normalized against mean Ca2+ transients recorded at

matching time points in Ctrl experiments (Sylantyev et al.,

2013) (see Experimental Procedures). Surprisingly, we found

that blocking NMDARs by APV had no effect on Ca2+ transients

elicited by 5 3 50 Hz APs (DG/R: 97.9% ± 7.3% of Ctrl record-

ings, n = 5; p = 0.41, unpaired t test; Figure 4C). It is possible

that the activation of only one presynaptic axon (because only

one presynaptic cell was stimulated in these experiments) pro-

duces a monosynaptic EPSP that is insufficient to substantially

relieve the Mg2+ block among postsynaptic NMDARs. Indeed,

most Schaffer collaterals (76%) make a single apposition on a

CA1 pyramidal neuron, and only an additional 4% of the axons
Ce
wind back and forth across individual dendrites, formingmultiple

closely spaced synapses (Sorra and Harris, 1993). To test the

effects of further Mg2+ block relief on NMDAR-dependent pre-

synaptic Ca2+ entry (such as during multisynaptic EPSPs exert-

ing strong postsynaptic depolarization), we removed Mg2+ from

perfusion solution (NBQX was added in this case to prevent

epileptiform activity). Indeed, Mg2+-free solution significantly

enhanced presynaptic Ca2+ entry produced by activation of a

single axon (DG/R: 119.0% ± 6.1% of Ctrl recordings, n = 7;

p < 0.05, unpaired t test; Figure 4D). This enhancement was abol-

ished by APV (DG/R: 103.9% ± 5.6% of Ctrl recordings, n = 7;

p = 0.31, unpaired t test; Figure 4D), suggesting that NMDARs

modulate presynaptic Ca2+ entry if a sufficient number of these

receptors are enabled. Then, we added MK801 to the patch-

pipette solution (iMK801) to block presynaptic NMDARs intracel-

lularly (see Figure S3 for Ctrl effects of iMK801 on synaptically

induced NMDAR responses) and found that in these conditions,

the removal of extracellular Mg2+ was still able to potentiate

presynaptic Ca2+ transients elicited by 5 3 50 Hz APs (DG/R:

120.8% ± 4.6% of Ctrl recordings, n = 9; p < 0.05, unpaired

t test; Figure 4E), suggesting that the observed potentiation

does not require presynaptic NMDARs.

In developing tissue, the modulation of presynaptic Ca2+ tran-

sients by NMDARs can be attributed to presynaptic NMDARs

(Corlew et al., 2007; McGuinness et al., 2010). We therefore

investigated the expression of presynaptic NMDARs in rats at

P26 using the immunoelectron-labeling methodology, SDS-

FRL (Tarusawa et al., 2009), which can directly separate images

of pre- and postsynaptic membranes in the CA1 region of the

hippocampus. Presynaptic active zones were identified by

immunolabeling for the CAZ-associated structural protein

(CAST) on the P face of complementary images (Figure 4F; see

Experimental Procedures). When the fracture plane occurred in

a synapse, the presynaptic P face was labeled for CAST, and

the postsynaptic E face was labeled for GluN1, and both were

observed adjacent to each other. In the examined replicas, the

labeling density of the postsynaptic GluN1 was 394 ±

194 mm�2. Out of 49 presynaptic active zones with CAST labeling

on the P face, 48 had no labeling for GluN1 on the complemen-

tary E face of the synapse (Figure 4F). This result suggests that

presynaptic NMDARs occur inside active zones at only �2%

CA1 synapses at this age, and thus, the contribution of presyn-

aptic NMDARs to the modulation of presynaptic Ca2+ transients

in imaged boutons is, if anything, unlikely.

NMDAR-Mediated K+ Efflux Boosts Ca2+-Dependent
Glutamate Release
To further test if the activation of NMDARs during stimulation of

multiple axons can affect presynaptic Ca2+ transients, we bolus

loaded Schaffer collaterals with a membrane-permeable Ca2+

dye, Oregon green BAPTA-1 AM, and recorded Ca2+ transients

in labeled boutons �200 mm away from the loading site (Figures

5A and 5B). Under these conditions (multiaxon stimulation in the

absence of all blockers), Ca2+ transients (fluorescence incre-

ment DF/F) evoked by extracellular stimulation (5 3 50 Hz)

were significantly reduced by APV application, to 80.7% ±

12.2% of baseline (n = 12; p < 0.05, Wilcoxon signed-rank

test; Figure 5C).
ll Reports 5, 941–951, November 27, 2013 ª2013 The Authors 945



Figure 4. Postsynaptic NMDARs Regulate

Presynaptic Ca2+ Transients

(A) The left panel is a two-photon image showing a

CA3 pyramidal neuron loaded with Alexa Fluor

594. Right panel is a close-up image of the axon

with boutons boxed on the left. Yellow dotted line

indicates place of line scan.

(B) Sample of line-scan images of Fluo-5F (green)

and Alexa Fluor 594 (red) is presented. Changes in

Fluo-5F are produced by APs evoked in soma (five

stimuli, 50 Hz). Arrow points to the start of the

stimulation. Traces on the right are current pulse

injections in soma, AP recorded in soma, and Ca2+

transients in axonal bouton (DG/R, gray indicates

six individual traces and averaged thick black

trace).

(C) APV did not produce significant change in

presynaptic Ca2+ transients in individual boutons.

Top view is sample traces. Black indicates Ctrl,

red APV. Bottom view is summary plots.

(D) Mg2+ removal (0-Mg2+) enhanced presynaptic

Ca2+ transients. This enhancement was blocked

by extracellular APV. Top view is sample traces.

Black indicates Ctrl, blue 0-Mg2+. Bottom view is

summary plots.

(E) Mg2+ removal enhanced presynaptic Ca2+

transients in the presence of intracellular MK801

(iMK801). Bottom image shows that 1 of 49

analyzed synaptic profiles had GluN1 labeling in

the presynaptic active zone. Top view is sample

traces. Black indicates Ctrl, blue 0-Mg2+. Bottom

view is summary plots.

(F) Complementary replica images were labeled

for GluN1 with 5 nm gold particles (red) and CAST

with 10 nm gold particles (black). Top images

show that three presynaptic active zones with

CAST labeling (left) have their complementary

replica (arrows) without labeling for GluN1 on the

presynaptic E face (right).

Columns represent themean, circles the individual

slices. Error bars, SEM. NS p > 0.05 and *p < 0.05.

See also Figure S3.
Because the NMDAR-dependent enhancement of presynap-

tic Ca2+ transients can modulate the presynaptic release proba-

bility, we monitored changes in fEPSPs during five stimuli at

50Hz.We hypothesized that activation of postsynaptic NMDARs

during preceding multisynaptic EPSPs could trigger K+ efflux

and potentiate the succeeding EPSPs. Indeed, APV reduced

the ratio between first and fifth fEPSPs in the train (fEPSP5/

fEPSP1) to 85% ± 4.8% of Ctrl (n = 6; p = 0.58, Wilcoxon

signed-rank test; Figure 5D) with no effect on the first fEPSP
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(101% ± 11.8% of baseline, n = 7; p >

0.05, Wilcoxon signed-rank test). How-

ever, APV had no effect on the fEPSP5/

fEPSP1 ratio in CA1-GluN1 KO mice

(107% ± 8.1% of baseline, n = 7; p =

0.66, Wilcoxon signed-rank test). These

findings suggest that activation of post-

synaptic NMDARs regulates presynaptic

glutamate release in Schaffer collaterals

in an activity-dependent manner. We
further confirmed that this regulation is mediated by K+ elevation

in the synaptic cleft. An increase in extracellular K+ is known to

produce a biphasic effect of presynaptic release, first potentia-

tion, and then depression (Hori and Takahashi, 2009). We

increased extracellular K+ to 7.5 mM, which potentiated fEPSPs

to 144% ± 16% of baseline (n = 7; p < 0.05, Wilcoxon signed-

rank test). In this condition, APV application produced no signif-

icant effect on fEPSP5/fEPSP1 ratio (100% ± 5% of baseline in

7.5 mM K+, n = 8; p = 0.19, Wilcoxon signed-rank test),



Figure 5. Activation of Multiple Synaptic

Inputs Is Required for Regulation of Pre-

synaptic Ca2+ Transients and Glutamate

Release by Postsynaptic NMDARs

(A) Schematic illustrates the experimental

arrangement for Ca2+ imaging in multiple boutons.

(B) Oregon green BAPTA1-AM was pressure

injected into the str.radiatum to label presynaptic

fibers (arrows).

(C) Presynaptic Ca2+ transients recorded in re-

sponse to extracellular stimulation were sensitive

to APV. Top view is sample traces in Ctrl (black)

and in APV (red). Bottom view is a summary plot.

(D) APV reduced the fEPSP5/fEPSP1 ratio in

response to 53 50 Hz stimulation in Ctrl but not in

CA1-GluN1 KO mice or at high K+ (7.5 mM). Top

views are sample traces in Ctrl (black) and in

APV (red). Bottom view is a summary plot of

APV effect. The fEPSP5/fEPSP1 ratio in APV is

normalized to Ctrl.

(E) A 5 3 50 Hz stimulation enhanced the ampli-

tude of subsequent EPSPs in a single neuron. This

enhancement was suppressed by replacing

postsynaptic K+ for NMDG+ or blockade of post-

synaptic NMDARs by iMK801. Left view is

sample traces of EPSPs produced by 5 3 50 Hz

stimulation in Ctrl (black, K+-based solution), with

NMDG+-based solution (red) and with iMK801

(blue, K+-based solution with iMK801). Right view

is EPSP amplitudes normalized to the amplitude

of the first EPSP.

In (C) and (D), the columns represent the mean,

circles the individual slices. Error bars, SEM. NS

p > 0.05 and *p < 0.05. Arrows indicate electrical

stimulation.
suggesting that elevated K+ occludes the effect of NMDAR-

dependent K+ efflux on the presynaptic terminal.

Next,we recordedEPSPs incurrentclampmode inasingleCA1

pyramidal neuron with KCH3SO3-based solution in the absence

of all blockers (Figure 5E). Five stimuli at 50 Hz delivered to

Schaffer collaterals triggered EPSPs with increasing amplitudes.

The facilitation of EPSPs in the burst was significantly reduced
Cell Reports 5, 941–951, N
when the recordings were performed

with NMDGMeSO4-based solution, which

replaces intracellular K+ and prevents

K+ efflux during synaptic transmission

(F(1,4) = 74.16, p < 0.001 for the effect

of EPSP facilitation during the burst;

F(1,4) = 11.04, p = 0.008 for the effect of

K+ replacement for NMDG+; F(1,4) = 6.1,

p < 0.001 for interaction of facilitation

effect and K+ replacement; repeated-

measures two-way ANOVA). The facilita-

tion of EPSPs in the burst was also

reduced when iMK801 was added to

KCH3SO3-based solution (F(1,4) = 6. 46,

p = 0.03 for the difference between Ctrl

and iMK801 solutions; F(1,4) = 6.1, p <

0.001 for interaction of facilitation effect

and solution replacement; repeated-mea-
sures two-way ANOVA), suggesting that K+ efflux through post-

synaptic NMDARs plays the key role in presynaptic facilitation.

DISCUSSION

In this study, we found that the extracellular K+ concentration in

thesynaptic environment increases following synaptic stimulation
ovember 27, 2013 ª2013 The Authors 947



and that this is in a large part due to K+ efflux from postsynaptic

NMDARs. Our results suggest that this increase in K+ can act as

a retrograde messenger modulating Ca2+ entry at presynaptic

terminals.

Although extracellular K+ rises during glutamatergic synaptic

transmission have long been described (Bergles and Jahr,

1997; Poolos et al., 1987), the contribution of distinct synaptic

glutamate receptors to K+ efflux has not been investigated. We

have found that postsynaptic NMDARs contribute substantially

more to K+ efflux than do AMPARs during stimulation of multiple

Schaffer collaterals. Although synaptic AMPARs generate a

greater peak current than do NMDARs, AMPARs activate and

deactivate within a few milliseconds of presynaptic glutamate

release. In contrast, the open probability of NMDARs typically

peaks 20–30 ms postactivation and decays over hundreds of

milliseconds (Attwell and Gibb, 2005). Moreover, NMDARs

have relatively larger single-channel conductance compared to

AMPARs (Spruston et al., 1995). Together, this makes the total

electric charge carried by NMDARs on average five times larger

than that of AMPARs during extracellular stimulation of Schaffer

collaterals (Otmakhova et al., 2002). In addition, the contribution

of NMDARs (which normally require AMPAR-dependent depo-

larization to activate) can be further increased by longer-lasting

membrane depolarization during sustained postsynaptic activ-

ity, which could further relieve the receptor Mg2+ block. Such

channel properties provide a potential explanation for the larger

contribution of NMDARs to K+ efflux and allow a sufficient time

integration window for the buildup of local extracellular K+ that

could affect subsequent synaptic events.

We have found that K+ efflux through postsynaptic NMDARs

enhance presynaptic Ca2+ transients and activity-dependent

fEPSP facilitation. The candidate underlying mechanism is pre-

synaptic depolarization produced by extracellular K+ rise (Hori

and Takahashi, 2009). Depolarization of the presynaptic terminal

can broaden AP time course (Geiger and Jonas, 2000; Hori and

Takahashi, 2009; Sasaki et al., 2011) and boost presynaptic Ca2+

entry. In some excitatory hippocampal synapses, neurotrans-

mitter release varies with presynaptic Ca2+ entry with a 2.5-

power relationship (Scott et al., 2008), suggesting that even a

minor change in presynaptic Ca2+ can have a significant impact

on the magnitude of multisynaptic EPSCs.

Depolarizationof thepostsynapticneuronenhances retrograde

K+ signaling not only by removing the voltage-dependent Mg2+

block of NMDARs but also by increasing the driving force for

K+. This could be another reason why strong postsynaptic depo-

larization resulting from the activation of multiple synaptic inputs

is required for K+-mediated retrograde signaling. Activation of a

single axon does not produce sufficient postsynaptic depolariza-

tion to achieve either the necessary numbers of Mg2+-unblocked

NMDARs or the high K+ driving force. This and related phenom-

ena can explain an important distinction between two types of

ionic retrograde signals mediated by NMDARs: the K+ elevation

describedhere and theCa2+depletion reportedpreviously (Rusa-

kov and Fine, 2003). The effects of intracleft Ca2+ depletion could

occur at a single synapse, and its effect on release probability

could only be detected within 8–20 ms postrelease because this

phenomenon depends directly on the time course of intracleft

Ca2+ (RusakovandFine,2003).Asmeasured from IK, theextracel-
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lular K+ rise lasts for hundreds of milliseconds and, thus, could

increase presynaptic release probability above and beyond the

effects mediated by partial Ca2+ depletion in the cleft.

Our data suggest that retrograde signaling due to NMDAR-

dependent K+ efflux requires relatively strong postsynaptic

depolarization. How could this occur in physiological condi-

tions? A recent study has shown that during network activity

in situ, adjacent spines are frequently activated in synchrony,

thus producing relatively strong postsynaptic depolarization:

this corresponds to dendritic foci that receive locally convergent

inputs from presynaptic cell assemblies (Takahashi et al., 2012).

Synchronous activation of such clustered synaptic inputs can

trigger generation of a local dendritic spike (Polsky et al.,

2009), which also involves regenerative activation of NMDARs

resulting from the voltage-dependent relief of Mg2+ block at

10–20 mm dendritic segments (Rhodes, 2006). Because the

amplitudes of such dendritic spikes are much larger, and their

spatial localization is more specific, than that of back-propa-

gating APs (Golding et al., 1999), they appear a plausible

candidate for triggering dendritic branch-specific retrograde K+

signaling, especially in distal dendrites.

Retrograde K+ signaling can also be linked to certain forms of

synaptic plasticity. Facilitation of the retrograde K+ signal by the

coincidence of presynaptic release with a bAPmay be important

for spike time-dependent plasticity (STDP) (Abbott and Nelson,

2000; Bi and Poo, 1998). Sustained potentiation of EPSPs can

also lead to increased postsynaptic K+ efflux (Ge and Duan,

2007). Thus, long-term potentiation can be considered not only

a mechanism to increase synaptic strength but also a mecha-

nism to increase retrograde K+ signaling. Because synaptic

plasticity has been associated with learning andmemory, further

studies are needed to elucidate the role of enhanced NMDAR-

mediated retrograde K+ signaling in these brain functions.

Our findings also shed light on mechanisms underlying some

forms of interactionswithin the tripartite synapse involving a local

astrocyte. Ca2+ events in hippocampal astrocytes trigger release

ofD-serine, acoagonist of neuronalNMDARs (Henneberger et al.,

2010; Panatier et al., 2006). D-serine can enhanceNMDAR-medi-

ated retrograde signaling by K+, suggested by the finding that

Ca2+ uncaging in hippocampal astrocytes produces local broad-

eningof APs in axons ofCA3pyramidal neurons and facilitation of

downstream synaptic transmission (Sasaki et al., 2011), which

was prevented by a mixture of AMPAR and NMDAR antagonists.

In summary, our results propose that NMDAR-mediated K+

retrograde signaling contributes to modulation of presynaptic

neurotransmitter release and is therefore likely to be important

for neuronal computation and plasticity. We identify the receptor

that regulates synaptic K+ efflux as the postsynaptic NMDAR,

but further studies are needed to address the role of cleft

geometry and K+ clearance mechanisms for K+ dynamics in

the synaptic cleft.
EXPERIMENTAL PROCEDURES

Rats and Mice Experiments

All the experiments were done in 21- to 35-day-old Sprague-Dawley rats and

28- to 35-day-old C57BL/6J mice with two exceptions: (1) 42- to 49-day-old

CA1-GluN1 KO mice (NR1 fl/fl; CaMKII-Cre) and littermate Ctrls (NR1 fl/fl)



(Tsien et al., 1996) were used for Figures 1I and 5D; and (2) 26-day-old rats, but

no mice, were used for Figure 3F. When both rats and mice were used, no

difference between species was found, and the results were grouped together.

All procedures were done in accordance with the RIKEN regulations. Animals

wereanesthetizedwith2-bromo-2-chloro-1,1,1-trifluroethaneanddecapitated.

Hippocampal Slice Preparation

The brain was exposed, chilled with ice-cold solution containing 75 mM

sucrose, 87 mM NaCl, 2.5 mM KCl, 0.5 mM CaCl2, 1.25 mM NaH2PO4,

7 mM MgCl2, 25 mM NaHCO3, 1 mM Na-ascorbate, and 11 mM D-glucose.

Hippocampi from both hemispheres were isolated, then transverse slices

(350–400 mm) were cut with a vibrating microtome (Microm HM 650V; Thermo

Fisher Scientific) and left to recover for 30 min at 34�C and then at room tem-

perature for 1 hr in an interfaced chamber with ‘‘storage’’ solution containing

127 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgCl2, 1 mM CaCl2,

25 mM NaHCO3, and 25 mM D-glucose. Next, the slices were transferred to

the recording chamber and were continuously perfused with a solution con-

taining 127 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM

CaCl2, 25 mM NaHCO3, and 25 mM D-glucose. All solutions were saturated

with 95% O2 and 5% CO2. Osmolarity was 298 ± 3 mOsm. A total of 25 mM

NBQX, 100 mM picrotoxin, 5 mMCGP52432, and 200 mM S-MCPG was added

to the solution to block AMPA/kainate, GABAA, GABAB, and mGluRs, respec-

tively, unless stated otherwise. In Ca2+-free solution, 0.5 mMEGTAwas added

(Shah andHaylett, 2002). Cells were visually identified under infrared DIC using

the Olympus BX-61 microscope.

Electrophysiology

Whole-cell recordings in CA1 str.radiatum astrocytes were obtained using

patch electrodes filled with a solution containing 135 mM KCH3SO3, 10 mM

HEPES, 10 mM Na2-phosphocreatine, 4 mM MgCl2, 4 mM Na2ATP, and

0.4 mM NaGTP (pH adjusted to 7.2 with KOH; osmolarity to 290 mOsm) and

with a resistance of 3–5 MU. Passive astrocytes were identified by small

soma size (about 10 mm), low resting membrane potential (�84.0 ± 0.5 mV,

n = 16,) and low input resistance (16.3 ± 1.4MU, n = 16). Passive cell properties

were confirmed by linear I–V characteristics (Figure 1A).

For simultaneous field potential recordings, the glass electrode filled with

the extracellular solution was placed in the immediate vicinity of the recorded

astrocytes. Synaptic responses were evoked by stimulation of Schaffer collat-

erals with a bipolar electrode (FHC) placed in the str.radiatum more than

200 mm from the recording site.

Whole-cell recordings in CA3 pyramidal neurons were obtained using patch

electrodes filled with the solution containing 130 mM KCH3SO3, 8 mM NaCl,

10 mMHEPES, 10 mMNa2-phosphocreatine, 0.4 mMNa2GTP, 4 mMMgATP,

and 3 mM Na-ascorbate (pH adjusted to 7.2 with KOH; osmolarity to 290

mOsm). APs were induced by somatic current injections (3 ms, 1–2 nA). The

series resistance was usually <20 MU, and data were discarded if it changed

by more than 20% during the recording. In current clamp mode, the series

resistance was compensated with ‘‘bridge balance’’ function.

Whole-cell recordings in CA1 pyramidal neurons were obtained using patch

electrodes filled with the solution containing 130 mM KCH3SO3, 8 mM NaCl,

10 mM HEPES, 2 mM EGTA, 10 mM Na2-phosphocreatine, 0.4 mM Na2GTP,

4 mM MgATP, 3 mM Na-ascorbate, and 10 mM QX314Cl (pH adjusted to 7.2

with KOH; osmolarity to 290 mOsm). In some cases, intracellular MK801 was

added to the solution to blockpostsynapticNMDARs; in other cases,KCH3SO3

was replaced for N-methyl-D-glucamine (NMDG) CH3SO3 to prevent postsyn-

aptic K+ efflux during synaptic transmission (Chen and Lipton, 1997).

The signals were recorded with the patch-clamp amplifier Multiclamp 700B

(Molecular Devices), filtered at 2 kHz, and digitized at 4–10 kHzwith the NI PCI-

6221 card (National Instruments). The data were visualized and stored with the

software WinWCP (supplied free of charge to academic users by Dr. John

Dempster, University of Strathclyde, UK).

Ca2+ Imaging

Ca2+ dynamics in individual axons was studied in the cells filled through the

patch pipette with Alexa Fluor 594 (50 mM) and Fluo-5F (200 mM) for at least

20min before the start of recording. Two-photon Ca2+ imaging was performed

with a two-scanner FV1000-MPE laser-scanning microscope (Olympus)
Ce
equipped with a mode-locked (<140 fs pulse width) tunable 720–930 nm laser

Chameleon XR (Coherent). Both dyes were excited at 810 nm laser wave-

length, and their fluorescence was chromatically separated and detected

with two independent photomultipliers (PMTs). Alexa Fluor 594 emission

was used to identify the axonal boutons of CA3 pyramidal neurons (about

150 mm from the soma). Line-scan imaging was synchronized with electro-

physiological recordings. The dark noises of the PMTs (Gdark noise and Rdark

noise) were collected when the laser shutter was closed in every recording.

The changes in baseline Ca2+ level weremonitored as a ratio between baseline

Fluo-5F and Alexa Fluor 594 fluorescences throughout the experiment: G/R =

(Gbaseline � Gdark noise)/(Rbaseline� Rdark noise). If this ratio increased during the

experiment by more than 20%, the cells were discarded. Ca2+ transients

were presented as DG/R = (Gpeak � Gbaseline)/(Rbaseline� Rdark noise), where

Gbaseline and Rbaseline are averaged fluorescences 50–100 ms before the stim-

ulation, and Gpeak is the averaged fluorescences 30–40 ms around the peak

fluorescence. Using high-frequency stimulation (30 stimuli 3 100 Hz), we

established that the Ca2+ dye was far from saturation (Figure S4). During the

recordings, we also found that concentration of both dyes increases in the

boutons (Figure S5). Diffusion of Ca2+ dyes introduces additional Ca2+ buffer,

reducing the amplitude of recorded Ca2+ transients (Brenowitz and Regehr,

2007). Therefore, we established the mean amplitude of Ca2+ transients in

Ctrl recordings (n = 5) without any pharmacological treatment. The points of

recordings with pharmacological treatment were normalized to corresponding

mean amplitudes obtained in Ctrl recordings.

Axonal Ca2+ dynamics in response to stimulation of multiple axons was per-

formed after bolus loading of 500 mM Oregon green BAPTA1-AM dissolved in

2% Pluronic F-127 and 10% DMSO through the glass pipette. The tip of the

pipette was inserted into CA1 str.radiatum, and the dye-containing solution

was injected (50–60 hPa for 5 min) (Sasaki et al., 2011). After a recovery period

of >1 hr in a recording chamber, confocal images were taken with a 488 nm

argon laser (Melles Griot) and emission filter (BA505IF). The viability of

dye-loaded slices was verified by monitoring fEPSPs in response to Schaffer

collateral stimulation. Ca2+ transients in response to Schaffer collateral stimu-

lation were recorded in line-scan mode from axonal boutons located�200 mm

away from the dye-loading site and presented as relative change in fluores-

cence of single-dye DF/F0.

NBQX was omitted in Ca2+-imaging experiments to allow AMPARs to depo-

larize the postsynaptic cell and release Mg2+ block, except in the experiments

with Mg2+-free solution, when NBQX was present to prevent epileptic activity.

Mathematical Modeling

K+ dynamics within the cleft was calculated in a model synapse consisting of

two cylinders (pre- and the postsynaptic parts) with the identical radii of

300 nm (Rsyn) and located opposite to each other with a cleft (d) of 20 nm

(Savtchenko et al., 2013). The model synapse was separated by a 200 nm

space from neighboring structures. Glutamate (3,000molecules) was released

in the center of the presynaptic part opposing the postsynaptic density of a

200 nm radius (Rpsd). AMPARs (NAMPA, 50) and NMDARs (NNMDA, 20) were

scattered inside the postsynaptic density and had the single channel conduc-

tances of gAMPA = 10 pS and gNMDA = 50 pS, respectively. K+ flowed from post-

synaptic neurons through both NMDARs and AMPARs into the cleft and then

to the extracellular space, changing the K+ concentration inside and outside

the cleft. At any discrete time, K+ concentration was calculated inside the

i-th ring of radius ri and a width of dr using different diffusion equations inside

(r < Rpsd, Equation 1) and outside (r > Rpsd, Equation 2) of postsynaptic density.

v½P�
vt

=D
1

r

v

vr

�
r
v½P�
vr

�

+
NNMDAgNMDA � fðV ;MgÞ � ½O�NMDAðEm � ENMDAÞ

F V

+
NAMPAgAMPA½O�AMPAðEm � EAMPAÞ

F V

½P�out = 2:5 mM

(Equation 1)
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v½P�
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=D
1

r

v

vr

�
r
v½P�
vr

�
; (Equation 2)

where [P] is K+ concentration, which is equal to [P]out without receptor activa-

tion, D = 1 mm2/ms is K+ diffusion coefficient, [O]NMDA and [O]AMPA are the pro-

portions of open NMDARs and AMPARs, respectively (see below), F is the

Faraday constant, V =pdR2
psd is volume inside the cleft, and fðVp;MgÞ is

the function that determines voltage and Mg2+ dependence of NMDARs

(Equation 3) (Jahr and Stevens, 1990).

fðVp;MgÞ= 1

1+
2½Mg2+ �
3:57

Expð�0:062 � VpÞ
; (Equation 3)

where postsynaptic membrane potential inside the cleft (Vp) was calculated as

Cm

dVp

dt
= Ip where Ip =GmðVp � VrÞ+GNMDAVp +GAMPAVp;

(Equation 4)

where Vr is the membrane potential outside the cleft, and Ip is the postsynaptic

current that was calculated at each time step (dt, 0.1 ms).

[O]NMDA and [O]AMPA were calculated as previously described by Jonas

(1993) and Lester et al. (1993) using the glutamate concentration ([Glu]) and

the concentration of NMDARs  
NNMDA

ðpRpsdÞ2
!

and AMPARs  
NAMPA

ðpRpsdÞ2
!

in the postsynaptic density. [Glu] was modeled as a time-dependent dynamic

process that corresponded to the solution of diffusion equation

½Glu�= ½Glu�Init
��
r = 0

Exp

�
� r2

4DGlut

�
4pDGlut

; (Equation 5)

with initial glutamate concentration ([Glu]init) inside the volume with radius

Rpsd/10

½Glu�Init
��
r =0

=
Q

2 pð0:1RpsdÞ2dNA

; (Equation 6)

where NA is the Avogadro number, DGlu = 0.3 mm2/ms is a diffusion coefficient

inside the cleft (Savtchenko and Rusakov, 2005), and t is time.

The total number of potassium molecules inside the cleft at given time twas

calculated as

2p

ZRsyn
0

r½P� dr: (Equation 7)

The model parameters were adjusted for 33�C–35�C. The model code was

implemented in Mathematica 8.

SDS-FRL

The rats (26 days old) were anesthetized with sodium pentobarbital (50 mg/kg,

i.p.) and perfused transcardially with 25 mM sodium phosphate buffer (PB)

containing 0.15 M saline for 1 min, followed by perfusion with 2% paraformal-

dehyde in 0.1 M sodium PB for 12 min. Coronal slices (150 mm thick) were cut

using a vibrating microslicer (Linear Dosaka) in 0.1 M PB. The CA1 region of
950 Cell Reports 5, 941–951, November 27, 2013 ª2013 The Authors
hippocampus was trimmed from the slices. The trimmed specimens were

immersed in 30% glycerol/0.1 M PB for a cryoprotection at 4�C overnight

and frozen by a high-pressure freezer (HPM010; BAL-TEC, Balzers). Frozen

tissues were then fractured at�140�C using a double-replica device and repli-

cated by deposition of carbon (1–2 nm thick), platinum (uni-direction from 60�,
2 nm), and carbon (20 nm) in a freeze-fracturing device (JFDII; JEOL). Both

sides of the complementary replicas were picked up individually, and the

tissue that remained beneath the replicas was dissolved with gentle reciprocal

shaking at 80�C for 18 hr in a solution containing 2.5%SDS, 20% sucrose, and

15 mM Tris-HCl (pH 8.3). The replicas were then washed in 50 mM Tris-

buffered saline (TBS) (pH 7.4) containing 0.05% BSA and 0.05% normal

goat serum (NGS) and blocked with 5% BSA plus 5% NGS in TBS for 1 hr

at room temperature. The replicas were incubated with a mouse antibody

against GluN1 (MAB363; 4 mg/ml, Millipore) together with a rabbit antibody

against CAST (1:50 diluted; Hagiwara et al., 2005) at 15�C for 22 hr. Specimens

were washed, then incubated with a mixture of anti-mouse antibodies conju-

gated with 5 nm gold particles (Amersham Pharmacia) and anti-rabbit anti-

bodies conjugated with 10 nm gold particles (British Biocell International) for

29 hr at 15�C. The specificity of the NR1 antibody and CAST antibody was

confirmed in our previous studies, respectively (Hagiwara et al., 2005;

Tarusawa et al., 2009). Complementary replicas were examined at 100 kV

with a Tecnai 12 transmission electron microscope (FEI Company). All images

were photographed as stereo pairs having an 8� included angle and examined

stereoscopically to exclude technical noise of the labeling for the data collec-

tions (Li et al., 2008). For further details regarding the drugs and chemicals

used and data analysis, please refer to the Supplemental Experimental

Procedures.
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