262 research outputs found

    Molecular epidemiology of human rhinoviruses

    Get PDF
    The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.Työn ensimmäinen osa koostuu molekyyliepidemiologisesta tutkimuksesta, jossa tutkittiin erään ihmisen enteroviruksen (HEV), echovirus 30:n kliinisiä isolaatteja. Tämä tutkimus on osa HEV-B virusten molekyyliepidemiologiaa tutkivaa sarjaa. Tutkimuksessa mukana olleet kaikkiaan 130 viruskantaa oli eristetty eri puolella Eurooppaa. Sekvenssianalyysi käsitti kolme erillistä genomialuetta; 420 nukleotidin pituisen VP4/VP2-kapsidiproteiineja koodaavan osan, koko 876 nukleotidin pituisen VP1-kapsidiproteiinia koodaavan geenin sekä 150 nukleotidin pituisen VP1/2A- risteysalueen. Analyysi paljasti vallitsevien geneettisten alaryhmien jatkumon yhden päägenotyypin sisällä. Aiemmat genotyypit olivat korvautuneet geneettisesti yhteinäisellä alatyypillä, joka oli kiertänyt Euroopassa 1970-luvun lopulta lähtien. Muut tutkimusryhmät olivat havainneet saman genotyypin myös Pohjois-Americassa ja Australiassa. Kuitenkin maailmanlaajuisesti muitakin yhtä aikaa kiertäviä genotyyppejä on havaittu. Echovirus 30:lla havaittu yhden päägenotyypin vallitsevuus eroaa muista enterovirusserotyypeistä, joita on tutkittu molekyyliepidemiologian keinoin. Tällaisia ovat esimerkiksi poliovirukset sekä coxsackievirukset B4 ja B5, joilla on havaittu useita samanaikaisia geneettisesti eroavia alatyyppejä. Työn toisessa osassa ihmisen rinovirusten molekyyliepidemiologiaa tutkittiin 61 kliinisen isolaatin geneettisellä analyysillä 420 nukleotidin pituisella VP4/VP2- kapsidiproteiinialueella. Virusisolaatit oli kerätty alle kaksivuotiaista lapsista Tampereen alueella. Kliinisistä isolaateista saadut sekvenssit jakautuivat kahteen ennalta tunnettuun fylogeneettiseen pääryhmään. Alaryhmiä muodostui vuodenaikaisvaihtelun mukaan. Myös saman epidemiakauden aikana havaittiin kiertäneen useita erillisiä serotyypin kaltaisia klustereita. Lisäksi, klusterin havaittiin ilmestyneen uudelleen yhden epidemiakauden poissaolon jälkeen. Analysoitujen rinoviruskantojen molekyyliepidemiologia näytti monimutkaiselta, joten päätimme jatkaa rinovirustutkimuksia. Rinovirusten sekvenssianalyysiin oli saatavilla vain viisi aiemmin sekvensoitua prototyyppikantaa. Sen vuoksi kaikki nimetyt 102 rinovirusten prototyyppikantaa sekvensoitiin VP4/VP2-alueelta ja mahdollisuutta rinovirusten geneettiseen tyypitykseen tutkittiin. 76 prototyyppikantaa klusteroitui rinovirusten geneettiseen ryhmään A ja 25 ryhmään B. Serotyyppi 87 erosi muista rinoviruksista ja klusteroitui enterovirus D- ryhmään. Rinovirusten kliiniset isolaatit edustivat 19 erillistä serotyyppiä, kun kriteerinä käytettiin 20% eroavuutta sekvenssissä. Serotyyppien väliset erot rinoviruksilla olivat yleensä samaa luokkaa kuin enteroviruksilla on havaittu (noin 20%), mutta myös pienempiä, alle 10%, eroja havaittiin. Koska osa rinovirusserotyypeistä on geneettisesti hyvin lähellä toisiaan, ehdotamme, että geneettisen tyypityksen kriteerinä käytetään "lähintä prototyyppiä". Tämä tutkimus oli ensimmäinen kaikkien tunnettujen rinovirusprototyyppikantojen systemaattinen geneettinen kartoitus ja se tarjoaa pohjan ihmisen rinovirusten taksonomiselle luokittelulle kahteen ryhmään Human rhinovirus A (HRV-A) ja Human rhinovirus B (HRV-B). Työn viimeinen osa käsittelee fylogeneettistä analyysia, jossa oli mukana 48 rinovirusten prototyyppikantaa sekä 12 kliinistä isolaattia. Tutkittavana genomialueena oli ei-strukturaalinen viruksen RNA polymeraasia koodaava 3D-alue. Rinoviruskannat jakautuivat aiemmin määriteltyihin ryhmiin HRV-A ja HRV-B myös 3D-alueella. HRV-B klusteroitui geneettisesti lähemmäs enterovirus-B, -C ja poliovirusryhmiä kuin HRV-A:ta. Ryhmien sisäinen variaatio sekä HRV-A:ssa että HRV-B:ssä oli suurempaa 3D- kuin VP4/VP2-kapsidialueella, toisin kuin enteroviruksilla. Lisäksi rinovirusten variaatio 3D:ssa oli suurempaa kuin enteroviruksilla. 3D-alueella havaittiin erillinen klusteri, joka kapsidialueella kuului HRV-A:han. Se nimettiin HRV-A':ksi. Tämä havainto saattaa olla seurausta HRV-A rinovirusten eri genomialueiden erilaisesta evoluutiohistoriasta. Myös HRV-A:n fylogeneettisten puiden topologiassa havaittiin eroja kapsidialueen ja ei-strukturaalialueen välillä, mikä saattaa viitata eri kantojen rekombinaatioon. Kuitenkin kaikki 12 tutkittua kliinistä isolaattia klusteroitui samoin kuin kapsidialueella. Mahdollista rekombinaatiota selvitettiin julkisissa tietokannoissa saatavissa olevien rinovirusten kokogenomisekvenssien Similarity ja Bootscanning -analyyseillä. Todisteita rekombinaatiosta HRV-A:ssa saatiin, kun HRV2 ja HRV39 osoittivat keskimääräistä suurempaa samankaltaisuutta genomin ei-strukturaaliosassa. Ovatko juuri HRV2 ja HRV39 rekombinoituneita kantoja vai kenties jotkut muut toistaiseksi sekvensoimattomat HRV-A serotyypit, jää vielä selvitettäväksi

    COVID-19-diagnostiikka ja sen osuvuus

    Get PDF

    Käsihygieniaa ja tartuntariskien kartoitusta : STOPFLUNSSA-projekti 2008-2017

    Get PDF

    Long-lasting heterologous antibody responses after sequential vaccination with A/Indonesia/5/2005 and A/Vietnam/1203/2004 pre-pandemic influenza A(H5N1) virus vaccines

    Get PDF
    Background: Avian influenza A(H5N1) viruses have caused sporadic infections in humans and thus they pose a significant global health threat. Among symptomatic patients the case fatality rate has been ca. 50%. H5N1 viruses exist in multiple clades and subclades and several candidate vaccines have been developed to prevent A(H5N1) infection as a principal measure for preventing the disease.Methods: Serum antibodies against various influenza A(H5N1) Glade viruses were measured in adults by ELISA-based microneutralization and haemagglutination inhibition tests before and after vaccination with two different A(H5N1) vaccines in 2009 and 2011.Results: Two doses of AS03-adjuvanted A/Indonesia/5/2005 vaccine induced good homologous but poor heterologous neutralizing antibody responses against different Glade viruses. However, non-adjuvanted A/Vietnam/1203/2004 booster vaccination in 2011 induced very strong and long-lasting homologous and heterologous antibody responses while homologous response remained weak in naive subjects.Conclusions: Sequential vaccination with two different A(H5N1) pre-pandemic vaccines induced long-lasting high level cross-Glade immunity against influenza A(H5N1) strains, thus supporting a prime-boost vaccination strategy in pandemic preparedness plans. </div

    Seasonal influenza vaccines induced high levels of neutralizing cross-reactive antibody responses against different genetic group influenza A(H1N1)pdm09 viruses

    Get PDF
    Influenza A(H1N1)pdm09 viruses have been circulating throughout the world since the 2009 pandemic. A/California/07/2009 (H1N1) virus was included in seasonal influenza vaccines for seven years altogether, providing a great opportunity to analyse vaccine-induced immunity in relation to the postpandemic evolution of the A(H1N1)pdm09 virus. Serum antibodies against various epidemic strains of influenza A (H1N1)pdm09 viruses were measured among health care workers (HCWs) by haemagglutination inhibition and microneutralization tests before and after 2010 and 2012 seasonal influenza vaccinations. We detected high responses of vaccine-induced neutralizing antibodies to six distinct genetic groups. Our results indicate antigenic similarity between vaccine and circulating A(H1N1)pdm09 strains, and substantial vaccine-induced immunity against circulating epidemic viruses. (C) 2019 Published by Elsevier Ltd.Peer reviewe

    An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021

    Get PDF
    An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) spread from one inpatient in a secondary care hospital to three primary care facilities, resulting in 58 infections including 18 deaths in patients and 45 infections in healthcare workers (HCW). Only one of the deceased cases was fully vaccinated. Transmission occurred despite the use of personal protective equipment by the HCW, as advised in national guidelines, and a high two-dose COVID-19 vaccination coverage among permanent staff members in the COVID-19 cohort ward.Peer reviewe

    Kansallinen varautumissuunnitelma polion paluun torjumiseksi 2018-2020 : Päivitetty v. 2017-2019 versiosta

    Get PDF
    Tämän vanhan painoksen korvaa uusi, muutettu painos osoitteessa https://urn.fi/URN:ISBN:978-952-343-870-5</A
    corecore