188 research outputs found
Correction: PAIS: paracetamol (acetaminophen) in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN74418480]
BACKGROUND: The Paracetamol (Acetaminophen) In Stroke (PAIS) study is a phase III multicenter, double blind, randomized, placebo-controlled clinical trial of high-dose acetaminophen in patients with acute stroke. The trial compares treatment with a daily dose of 6 g acetaminophen, started within 12 hours after the onset of symptoms, with matched placebo. The purpose of this study is to assess whether treatment with acetaminophen for 3 days will result in improved functional outcome through a modest reduction in body temperature and prevention of fever.The previously planned statistical analysis based on a dichotomization of the scores on the modified Rankin Scale (mRS) may not make the most efficient use of the available baseline information. Therefore, the planned primary analysis of the PAIS study has been changed from fixed dichotomization of the mRS to a sliding dichotomy analysis. METHODS: Instead of taking a single definition of good outcome for all patients, the definition is tailored to each individual patient's baseline prognosis on entry into the trial. CONCLUSION: The protocol change was initiated becau
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Detrimental effects of tropisetron on permanent ischemic stroke in the rat
<p>Abstract</p> <p>Background</p> <p>Recent <it>in vitro </it>evidence indicates that blockade of 5-hydroxytryptamine (5-HT) receptor 3 (5-HT<sub>3</sub>) is able to confer protection in different models of neuronal injury. The purpose of the present study was to investigate the effect of tropisetron, a 5-HT<sub>3 </sub>receptor antagonist, on infarct size and neurological score in a model of ischemic stroke induced by permanent middle cerebral artery occlusion (pMCAO) in the rat.</p> <p>Methods</p> <p>Two different doses of tropisetron (5 and 10 mg/kg) or vehicle were administered intraperitoneally 30 min before pMCAO. Neurological deficit scores, mortality rate and infarct volume were determined 24 h after permanent focal cerebral ischemia.</p> <p>Results</p> <p>Tropisetron failed to reduce cerebral infarction. Animals receiving tropisetron showed a significant increase (p < 0.05) in neurological deficits and mortality rate.</p> <p>Conclusion</p> <p>Data from this study indicate that blockade of 5-HT<sub>3 </sub>receptors with tropisetron worsens ischemic brain injury induced by pMCAO. These findings could have important clinical implications. Patients taking tropisetron, and possibly other 5-HT<sub>3 </sub>antagonists, could potentially have a worse outcome following a brain infarct.</p
Immunotherapy with ponezumab for probable cerebral amyloid angiopathy
Objective:
Cerebral amyloid angiopathy (CAA) is caused by cerebrovascular deposition of β‐amyloid fragments leading to cerebrovascular dysfunction and other brain injuries. This phase 2, randomized, double–blind trial in patients with probable CAA assessed the efficacy and safety of ponezumab, a novel monoclonal antibody against Aβ1–40.
Methods:
Thirty‐six participants aged 55–80 years with probable CAA received intravenous placebo (n = 12) or ponezumab (n = 24). The change from baseline to Days 2 and 90 in cerebrovascular reactivity (CVR) was measured in the visual cortex as the natural log of the rising slope of the BOLD fMRI response to a visual stimulus. Safety and tolerability were also assessed.
Results:
The mean change from baseline to Day 90 was 0.817 (ponezumab) and 0.958 (placebo): a mean ratio of 0.852 (90% CI 0.735–0.989) representing a trend towards reduced CVR in the ponezumab group. This trend was not present at Day 2. There was one asymptomatic occurrence of amyloid–related imaging abnormality–edema in the ponezumab group. The total number of new cerebral microbleeds from baseline to day 90 did not differ between groups. The ponezumab group had a participant with nonfatal new cerebral hemorrhage with aphasia and a participant with subdural hemorrhage that site investigators deemed to be nondrug related. In the placebo group one participant had a fatal intracerebral hemorrhage and one participant had migraine with aura
Neurosphere-Derived Cells Exert a Neuroprotective Action by Changing the Ischemic Microenvironment
BACKGROUND: Neurosphere-derived cells (NC), containing neural stem cells, various progenitors and more differentiated cells, were obtained from newborn C57/BL6 mice and infused in a murine model of focal ischemia with reperfusion to investigate if: 1) they decreased ischemic injury and restored brain function; 2) they induced changes in the environment in which they are infused; 3) changes in brain environment consequent to transient ischemia were relevant for NC action. METHODOLOGY/PRINCIPAL FINDINGS: NC were infused intracerebroventricularly 4 h or 7 d after 30 min middle cerebral artery occlusion. In ischemic mice receiving cells at 4 h, impairment of open field performance was significantly improved and neuronal loss significantly reduced 7–14 d after ischemia compared to controls and to ischemic mice receiving cells at 7 d. Infusion of murine foetal fibroblast in the same experimental conditions was not effective. Assessment of infused cell distribution revealed that they migrated from the ventricle to the parenchyma, progressively decreased in number but they were observable up to 14 d. In mice receiving NC at 7 d and in sham-operated mice, few cells could be observed only at 24 h, indicating that the survival of these cells in brain tissue relates to the ischemic environment. The mRNA expression of trophic factors such as Insulin Growth Factor-1, Vascular Endothelial Growth Factor-A, Transforming Growth Factor-β1, Brain Derived Neurotrophic Factor and Stromal Derived Factor−1α, as well as microglia/macrophage activation, increased 24 h after NC infusion in ischemic mice treated at 4 h compared to sham-operated and to mice receiving cells at 7 d. CONCLUSIONS/SIGNIFICANCE: NC reduce functional impairment and neuronal damage after ischemia/reperfusion injury. Several lines of evidence indicate that the reciprocal interaction between NC and the ischemic environment is crucial for NC protective actions. Based on these results we propose that a bystander control of the ischemic environment may be the mechanism used by NC to rapidly restore acutely injured brain function
Animal models of focal brain ischemia
Stroke is a leading cause of disability and death in many countries. Understanding the pathophysiology of ischemic injury and developing therapies is an important endeavor that requires much additional research. Animal stroke models provide an important mechanism for these activities. A large number of stroke models have been developed and are currently used in laboratories around the world. These models are overviewed as are approaches for measuring infarct size and functional outcome
Piccolo genotype modulates neural correlates of emotion processing but not executive functioning
Major depressive disorder (MDD) is characterized by affective symptoms and cognitive impairments, which have been associated with changes in limbic and prefrontal activity as well as with monoaminergic neurotransmission. A genome-wide association study implicated the polymorphism rs2522833 in the piccolo (PCLO) gene—involved in monoaminergic neurotransmission—as a risk factor for MDD. However, the role of the PCLO risk allele in emotion processing and executive function or its effect on their neural substrate has never been studied. We used functional magnetic resonance imaging (fMRI) to investigate PCLO risk allele carriers vs noncarriers during an emotional face processing task and a visuospatial planning task in 159 current MDD patients and healthy controls. In PCLO risk allele carriers, we found increased activity in the left amygdala during processing of angry and sad faces compared with noncarriers, independent of psychopathological status. During processing of fearful faces, the PCLO risk allele was associated with increased amygdala activation in MDD patients only. During the visuospatial planning task, we found no genotype effect on performance or on BOLD signal in our predefined areas as a function of increasing task load. The PCLO risk allele was found to be specifically associated with altered emotion processing, but not with executive dysfunction. Moreover, the PCLO risk allele appears to modulate amygdala function during fearful facial processing in MDD and may constitute a possible link between genotype and susceptibility for depression via altered processing of fearful stimuli. The current results may therefore aid in better understanding underlying neurobiological mechanisms in MDD
Arterially Perfused Neurosphere-Derived Cells Distribute Outside the Ischemic Core in a Model of Transient Focal Ischemia and Reperfusion In Vitro
BACKGROUND: Treatment with neural stem cells represents a potential strategy to improve functional recovery of post-ischemic cerebral injury. The potential benefit of such treatment in acute phases of human ischemic stroke depends on the therapeutic viability of a systemic vascular delivery route. In spite of the large number of reports on the beneficial effects of intracerebral stem cells injection in experimental stroke, very few studies demonstrated the effectiveness of the systemic intravenous delivery approach. METODOLOGY/PRINCIPAL FINDINGS: We utilized a novel in vitro model of transient focal ischemia to analyze the brain distribution of neurosphere-derived cells (NCs) in the early 3 hours that follow transient occlusion of the medial cerebral artery (MCA). NCs obtained from newborn C57/BL6 mice are immature cells with self-renewal properties that could differentiate into neurons, astrocytes and oligodendrocytes. MCA occlusion for 30 minutes in the in vitro isolated guinea pig brain preparation was followed by arterial perfusion with 1x10(6) NCs charged with a green fluorescent dye, either immediately or 60 minutes after reperfusion onset. Changes in extracellular pH and K(+) concentration during and after MCAO were measured through ion-sensitive electrodes. CONCLUSION/SIGNIFICANCE: It is demonstrated that NCs injected through the vascular system do not accumulate in the ischemic core and preferentially distribute in non-ischemic areas, identified by combined electrophysiological and morphological techniques. Direct measurements of extracellular brain ions during and after MCA occlusion suggest that anoxia-induced tissue changes, such as extracellular acidosis, may prevent NCs from entering the ischemic area in our in vitro model of transitory focal ischemia and reperfusion suggesting a role played by the surrounding microenviroment in driving NCs outside the ischemic core. These findings strongly suggest that the potential beneficial effect of NCs in experimental focal brain ischemia is not strictly dependent on their homing into the ischemic region, but rather through a bystander mechanism possibly mediated by the release of neuroprotective factors in the peri-infarct region
- …