9,018 research outputs found
Microwave fidelity studies by varying antenna coupling
The fidelity decay in a microwave billiard is considered, where the coupling
to an attached antenna is varied. The resulting quantity, coupling fidelity, is
experimentally studied for three different terminators of the varied antenna: a
hard wall reflection, an open wall reflection, and a 50 Ohm load, corresponding
to a totally open channel. The model description in terms of an effective
Hamiltonian with a complex coupling constant is given. Quantitative agreement
is found with the theory obtained from a modified VWZ approach [Verbaarschot et
al, Phys. Rep. 129, 367 (1985)].Comment: 9 pages 5 figur
Incorporating remote visits into an outpatient clinic
Copyright @ 2009 Operational Research Society Ltd. This is a post-peer-review, pre-copyedit version of an article published in Journal of Simulation. The definitive publisher-authenticated version Eatock and Eldabi (2009), "Incorporating remote visits into an outpatient clinic", Journal of Simulation, 3, 179–188 is available online at the link below.Most telemedicine studies are concerned with either the technological or diagnostic comparisons, rather than assessing the impact on clinic management. This has attributed to the retrospective nature of the studies, with lack of data being the main cause for not using simulation for prospective analysis. This article demonstrates the use of simulation to assess the impact of prospective systems by utilising data generated from clinical trials. The example used here is the introduction of remote consultations into an outpatient's clinic. The article addresses the issues of using secondary data, in terms of the differences between the trial, the model and future reality. The result of running the simulation model show that exchanging the mode of service delivery does not improve patient wait times as expected, and that a protocol change in association with the introduction of remote visits is necessary to provide a substantial reduction in patient wait times
Cold electron Josephson transistor
A superconductor-normal metal-superconductor mesoscopic Josephson junction
has been realized in which the critical current is tuned through normal current
injection using a symmetric electron cooler directly connected to the weak
link. Both enhancement of the critical current by more than a factor of two,
and supercurrent suppression have been achieved by varying the cooler bias.
Furthermore, this transistor-like device demonstrates large current gain
20) and low power dissipation
Limitations in cooling electrons by normal metal - superconductor tunnel junctions
We demonstrate both theoretically and experimentally two limiting factors in
cooling electrons using biased tunnel junctions to extract heat from a normal
metal into a superconductor. Firstly, when the injection rate of electrons
exceeds the internal relaxation rate in the metal to be cooled, the electrons
do no more obey the Fermi-Dirac distribution, and the concept of temperature
cannot be applied as such. Secondly, at low bath temperatures, states within
the gap induce anomalous heating and yield a theoretical limit of the
achievable minimum temperature.Comment: 4 pages, 4 figures, added Ref. [6] + minor correction
Parity effect in Al and Nb single electron transistors in a tunable environment
Two different types of Cooper pair transistors, with Al and Nb islands, have
been investigated in a tunable electromagnetic environment. The device with an
Al island demonstrates gate charge modulation with 2e-periodicity in a wide
range of environmental impedances at bath temperatures below 340 mK. Contrary
to the results of the Al sample, we were not able to detect 2e-periodicity
under any conditions on similar samples with Nb island. We attribute this to
the material properties of Nb.Comment: 3 pages, 3 figure
The 10Be contents of SNC meteorites
Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC meteorites have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC meteorites. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC meteorites would have formed on the Martian surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC meteorites. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC meteorites
Heat conduction in 1D lattices with on-site potential
The process of heat conduction in one-dimensional lattice with on-site
potential is studied by means of numerical simulation. Using discrete
Frenkel-Kontorova, --4 and sinh-Gordon we demonstrate that contrary to
previously expressed opinions the sole anharmonicity of the on-site potential
is insufficient to ensure the normal heat conductivity in these systems. The
character of the heat conduction is determined by the spectrum of nonlinear
excitations peculiar for every given model and therefore depends on the
concrete potential shape and temperature of the lattice. The reason is that the
peculiarities of the nonlinear excitations and their interactions prescribe the
energy scattering mechanism in each model. For models sin-Gordon and --4
phonons are scattered at thermalized lattice of topological solitons; for
sinh-Gordon and --4 - models the phonons are scattered at localized
high-frequency breathers (in the case of --4 the scattering mechanism
switches with the growth of the temperature).Comment: 26 pages, 18 figure
Gravitational and axial anomalies for generalized Euclidean Taub-NUT metrics
The gravitational anomalies are investigated for generalized Euclidean
Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz
vector of the Kepler-type problem. In order to evaluate the axial anomalies,
the index of the Dirac operator for these metrics with the APS boundary
condition is computed. The role of the Killing-Yano tensors is discussed for
these two types of quantum anomalies.Comment: 23 page
Recommended from our members
Shortcomings of the R-matrix method for treating dielectronic recombination
By performing radiation-damped R-matrix scattering calculations for the photorecombination of Fe17+ forming Fe16+, we demonstrate and discuss the difficulties and fundamental inaccuracies associated with the R-matrix method for treating dielectronic recombination (DR). Our R-matrix results significantly improve upon earlier R-matrix results for this ion. However, we show theoretically that all R-matrix methods are unable to account accurately for the phenomenon of radiative decay followed by autoionization. For Fe17+, we demonstrate numerically that this results in an overestimate of the DR cross section at the series limit, which tends to our analytically predicted amount of 40%. We further comment on the need for fine resonance resolution and the inclusion of radiation damping effects. Overall, slightly better agreement with experiment is still found with the results of perturbative calculations, which are computationally more efficient than R-matrix calculations by more than two orders of magnitude
- …