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A superconductor-normal metal-superconductor mesoscopic Josephson junction has been realized in
which the critical current is tuned through normal current injection using a symmetric electron
cooler directly connected to the weak link. Both enhancement of the critical current by more than
a factor of two, and supercurrent suppression have been achieved by varying the cooler bias.
Furthermore, this transistor-like device demonstrates large current gain~;20! and low power
dissipation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1756192#

Transport dynamics in mesoscopic structures where nor-
mal metals~N! are coupled with superconductors~S! are
currently the focus of extensive research.1,2 This stems
mainly from the relevance these systems have both from the
fundamental physics point of view and in light of their pos-
sible exploitation in nanoelectronics. In diffusive SNS junc-
tions, where the length of theN region exceeds the elastic
mean free path, coherent sequential Andreev scattering3 be-
tween the superconductors may lead to a continuum spec-
trum of resonant levels1 responsible for carrying the super-
current flow through the structure. The Josephson current is
given by supercurrent spectrum weighted by the occupation
number of correlated electron-hole pairs that is determined
by the quasiparticle energy distribution in theN region of the
junction. By changing the latter through current injection
from additionalnonsuperconductingterminals connected to
the N region4 both supercurrent suppression5 as well as its
sign reversal~p-transition! were demonstrated.6 As predicted
in Refs. 7 and 8, the distinctive quasiparticle distribution
existing in theN region of a biased SINIS structure~whereI
stands for an insulating barrier! is also well suited to control
the Josephson coupling in a long SNS weak link, allowing
either large supercurrentenhancementor efficient suppres-
sion with respect to equilibrium.

In this letter, we present the implementation and charac-
terization of a four-terminal superconducting structure~see
Fig. 1! consisting of a SNS mesoscopic junction integrated
with a SINIS electron cooler. A similar device was consid-
ered but not successfully operated in Ref. 7. In this transistor,
the maximum supercurrent flowing in the SNS junction is
controlled by voltage biasing the SINIS line whoseN region
is shared with the Josephson junction. Low temperature
transport measurements show enhancement of the critical
current under hot quasiparticle extraction by more than a
factor of two with respect to equilibrium. In addition this
device demonstrates low power dissipation and large current
gain.

The sample~shown in Fig. 1! consists of a Cu island,
0.37mm wide and 30 nm thick, symmetrically connected at
its ends via insulating barriers~with normal-state resistance

RT.240V! to two 60-nm-thick Al reservoirs, thus realizing
a SINIS cooler. The Josephson junction instead consists of an
Al/Cu/Al SNS weak link ~with normal-state resistance
RN511.5V!, whoseN region is shared with the SINIS line.
The minimum interelectrode separation in the SNS junction
of the present device isLJ.0.4 mm. The structure was fab-
ricated on a thermally oxidized Si substrate by electron beam
lithography and three-angle shadow-mask evaporation. The
electrical characterization was performed at different bath
temperatures down to 70 mK in a dilution refrigerator. From
low-temperature resistance measurements we deduced the
Cu diffusion coefficientD'10 cm2/s. This low value ofD
is probably caused by significant intermixing of the materials
at the NS interface leading to the strong reduction of the
electron mean free path in the weak link. The Al energy gap,
D5169 meV, was inferred from the low-temperature
current–voltage characteristic of the SINIS line~see Fig. 4!.
The coherence lengthjN5A\D/D'62 nm is then much
smaller thanLJ , providing the frame of thelong junction
regime.

The experiment consists of sweeping theI SNS current
across the SNS junction while measuring its differential re-

a!Electronic mail: savin@boojum.hut.fl

FIG. 1. Scanning electron micrograph of a typical structure including a
sketch of the measurement circuit. Two superconducting Al electrodes are
connected through insulating barriers to a Cu island to realize a symmetric
SINIS electron cooler. The supercurrentI J in the Al/Cu/Al junction is tuned
upon voltage biasing the SINIS control line.
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sistancedV/dI at different values of voltage bias (VSINIS)
across the SINIS control line. Figure 2~a! shows a subset of
dV/dI vs I SNS characteristics measured at the bath tempera-
ture Tbath572 mK for severalVSINIS. The curves display a
nonhysteretic behavior characteristic for overdamped
junctions.9 In the case of a SNS weak link the effect of
thermal fluctuations on the smearing of the voltage–current
characteristic is stronger10 than predicted by the model for
resistively shunted junction.11 We have chosen to define the
experimental critical current as the current where the differ-
ential resistance reachesRN/2.12 Notably, upon increasing
VSINIS, the current range where the differential resistance
vanishes widens initially, thus reflecting an enhancement of
I J , being maximized at a voltage corresponding toVSINIS

5300 mV.1.8D/e13 @curve labeled as 3 in Fig. 2~a!#; then,
further increase of bias leads to a monotonic decay and to a
complete suppression ofI J at larger voltages@curve labeled
as 6 in Fig. 2~a!#. This nonmonotonic behavior is seen in the
correspondingI –V curves in Fig. 2~b!.

The observed behavior is due to the relation existing
between the observable maximum supercurrentI J and the
quasiparticle energy distribution in the weak link. In the
present experimental situation of largeLSINIS, inelastic
electron–electron relaxation forces the electron system to re-
tain a local thermal~quasi!equilibrium. As a consequence,
the quasiparticle energy distribution can be described with a
Fermi–Dirac function at aneffectiveelectron temperature
Te . The temperatureTe is determined by the balance be-
tween two heat flows:

P~VSINIS,Te ,Tbath!1Pe2bath~Te ,Tbath!50. ~1!

The first term accounts for the net heat currentP transferred
from the N island to the superconductors upon biasing the
SINIS line:13

P5
2

e2RT
E

2`

`

n~E!@ f 0~Ẽ,Te!2 f 0~E,Tbath!#ẼdE, ~2!

whereẼ5E2eVSINIS/2, f 0(E,T) is the Fermi–Dirac distri-
bution function andn(E)5uRe@(E1iG)/A(E1 iG)22D2#u is
the ~smeared by nonzeroG! BCS density of states of the
superconductor.15 Equation~2! is symmetric inVSINIS, being
maximized slightly belowu2D/eu. The second term accounts
for energy transfer from electrons to the phonons of the nor-
mal island at the temperatureTbath and is equal toPe2bath

5SV(Te
52Tbath

5 ),16 whereV is the volume of theN island
andS'2 nWK25 mm23 for copper.13 The temperatureTe in
the weak link thus strongly depends onVSINIS and can be

smaller thanTbath.
17 At low temperature~i.e.,kBTbath!D!, in

a long SNS junction,I J is predicted to decrease exponen-
tially as Te increases18 in the regime wherekBTe@ETh

5\D/LJ
2. Thus, upon biasing the SINIS line,I J will be

changed with respect to equilibrium~i.e., atVSINIS50!, due
to the modification ofTe that now differs fromTbath.

In Fig. 3~a! we plot the extractedI J values as a function
of VSINIS at three different bath temperatures. For all dis-
played temperatures, the critical current increases monotoni-
cally up to aboutVSINIS.1.8D/e as expected from the reduc-
tion of Te by cooling. Then, further increase of bias voltage
leads to an efficient supercurrent suppression due to electron
heating. The equilibrium critical current~i.e., atVSINIS50! vs
Tbath is displayed in Fig. 3~b!. The I J behavior follows a
characteristic trend, decreasing upon rising the temperature,
but it differs from the temperature dependence predicted by
quasiclassical Green-function theory.1 The discrepancy can
be ascribed to the uncertainty in the determination of the
actual values of critical current, relatively narrow tempera-
ture range where it was observed and thermal decoupling
between electrons and bath at temperatures below 200 mK.
In Fig. 3, we show the expected critical current dependence
on VSINIS at Tbath5283 mK obtained from the solution of
Eqs.~1! and~2! to determine the effective electron tempera-
ture Te upon biasing the SINIS line, and assuming a linear
behavior of the critical currentI J vs Te below about 350 mK,
the slope of the linear dependence being inferred from the
measuredI J(Tbath). For this calculation, we assumed the al-
ready given parameters for the SINIS line andG51.8
31023D estimated from the ratio~.G/D! of the low-
temperature SINIS conductance at low and high bias.14 The

FIG. 2. SelecteddV/dI vs I SNS ~a! and current–voltage
characteristics~b! of the SNS junction atTbath572 mK
for differentVSINIS values~all curves are offset for clar-
ity!: 1–0, 2–194mV, 3–300mV, 4–342mV, 5–355mV,
6–938mV. Curves in~b! were obtained by numerical
integration of the corresponding ones in~a!.

FIG. 3. ~a! Critical currentI J vs control voltageVSINIS at three different bath
temperatures;~b! equilibrium supercurrent (VSINIS50) vs bath temperature.
Dashed line in~a! represents curve obtained from energy balance Eq.~1!
and the linear approximation ofI J(Tbath) shown in~b!.
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resemblance between calculation and experiment is evident
although details of the former one are dictated by theI J

dependence on temperature, which we cannot extrapolate re-
liably. To better characterize our device, we show in Fig. 4
~right axis! the dissipated powerP againstVSINIS in the SI-
NIS line at Tbath572 mK. The plot reveals that in the bias
voltage region of significant critical current enhancement
~i.e., in the 200–300mV bias range! P obtains values of the
order of 10213 W, while in the regime of supercurrent sup-
pression~i.e., for VSINIS.300 mV! some tens of pW. This
demonstrates the low power dissipation intrinsic to the
structure.8 The P behavior is directly related to the normal
current flow in the control line. The latter is displayed on the
left-hand side axis of Fig. 4 and shows that control currents
as low as a few nA are necessary to enhance the critical
current, while of about 100 nA to suppress it. The differential
current gainGI5dIJ /dISINIS againstI SINIS is shown in the
inset of Fig. 4. Notably,GI obtains values exceeding 20 in
the hot quasiparticle extraction regime, while of about211
in the voltage region of supercurrent suppression. We note
that higherGI values, as well as lower power dissipation and
control currents, could be attained by optimizing the struc-
ture design.8,14

In summary, we have demonstrated experimentally con-
trol of Josephson coupling under hot quasiparticle extraction
in a four-terminal superconducting structure. Our experimen-

tal result shows the potential of a SINIS line as a basis of a
promising class of mesoscopic transistors with high current
gain.
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FIG. 4. Current-voltage characteristic~left axis! and power dissipationP
5VSINISI SINIS ~right axis! of the SINIS line atTbath572 mK. The inset shows
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ture ~also displayed is the dependence onVSINIS).
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