44 research outputs found

    Targeting the spliceosome for cutaneous squamous cell carcinoma therapy:a role for c-MYC and wild-type p53 in determining the degree of tumour selectivity

    Get PDF
    This study was supported by DEBRA International and funded by DEBRA Austria (Saville-Proby 1). I.M.L and M.K.S were supported by an ERC Advanced Investigator Award (250170, Principal Investigator I.M.L.). C.M.P. and I.M.L. were supported by a Cancer Research UK Programme Grant (A13044)

    The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma

    Get PDF
    We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics

    Get PDF
    In their 2012 report, the President\u27s Council of Advisors on Science and Technology advocated replacing standard science laboratory courses with discovery-based research courses -a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    A course-based research experience: how benefits change with increased investment in instructional time

    Get PDF
    There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Genetic Suppressor of Two Dominant Temperature-Sensitive Lethal Proteasome Mutants of Drosophila melanogaster Is Itself a Mutated Proteasome Subunit Gene

    No full text
    Two dominant temperature-sensitive (DTS) lethal mutants of Drosophila melanogaster are Pros26(1) and Prosβ2(1), previously known as DTS5 and DTS7. Heterozygotes for either mutant die as pupae when raised at 29°, but are normally viable and fertile at 25°. Previous studies have identified these as missense mutations in the genes encoding the β6 and β2 subunits of the 20S proteasome, respectively. In an effort to isolate additional proteasome-related mutants a screen for dominant suppressors of Pros26(1) was carried out, resulting in the identification of Pros25(SuDTS) [originally called Su(DTS)], a missense mutation in the gene encoding the 20S proteasome α2 subunit. Pros25(SuDTS) acts in a dominant manner to rescue both Pros26(1) and Prosβ2(1) from their DTS lethal phenotypes. Using an in vivo protein degradation assay it was shown that this suppression occurs by counteracting the dominant-negative effect of the DTS mutant on proteasome activity. Pros25(SuDTS) is a recessive polyphasic lethal at ambient temperatures. The effects of these mutants on larval neuroblast mitosis were also examined. While Prosβ2(1) shows a modest increase in the number of defective mitotic figures, there were no defects seen with the other two mutants, other than slightly reduced mitotic indexes

    Multiple paternity in the nurse shark, Ginglymostoma cirratum. Environ

    No full text
    Synopsis For over a decade, we have been studying the reproductive behavior of the nurse shark, Ginglymostoma cirratum, in the Dry Torugas off the Florida Keys, an important mating and nursery ground for this species. In the course of these studies, we have used a variety of tags and tagging protocols to monitor individual animals. Here we report the use of molecular methods for the genetic analysis of nurse sharks. Specifically we have analyzed genetic variation at the MHC II α locus using the polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis of the amplified products. We found this technique to be a relatively rapid and reliable method for identifying genetic differences between individual sharks. Applying this method to a family of sharks consisting of a mother and 32 pups, we demonstrate that at least four fathers must have fathered this brood. Multiple paternity in the nurse shark suggests a mechanism by which populations of this species may maximize genetic variability. This seems especially valuable for philopatric species whose migratory movement, and thus potential for genetic diversity, is limited
    corecore