View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Estimating the relationship between abundance and distribution

Rindorf, Anna; Lewy, Peter

Published in:
Canadian Journal of Fisheries and Aquatic Sciences

Link to article, DOI:
10.1139/F2011-153

Publication date:
2012

Document Version _
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Rindorf, A., & Lewy, P. (2012). Estimating the relationship between abundance and distribution. Canadian
Journal of Fisheries and Aquatic Sciences, 69(2), 382-397. DOI: 10.1139/F2011-153

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13791832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1139/F2011-153
http://orbit.dtu.dk/en/publications/estimating-the-relationship-between-abundance-and-distribution(b45651df-348c-47df-bfad-01305362bd45).html

iRVl iRl VI Vel VT -

MR RE

yJ T riErE

i

-
For personal use only.

R Al

iR

_— .

Rt Rt

382

Estimating the relationship between abundance
and distribution

Anna Rindorf and Peter Lewy

Abstract: Numerous studies investigate the relationship between abundance and distribution using indices reflecting one of
the three aspects of distribution: proportion of area occupied, aggregation, and geographical range. Using simulations and ana-
lytical derivations, we examine whether these indices provide unbiased estimates of the relationship when estimated from
count data. The indices investigated include the proportion of empty samples, the proportion of structurally empty samples,
Lloyds index of patchiness, measures derived from Lorenz curves (such as Dos and the Gini index), and measures based on
Euclidean distance to the centre of gravity of the spatial distribution. Only the proportion of structurally empty areas, Lloyds
index, and indices of the distance to the centre of gravity of the spatial distribution are unbiased at all levels of abundance.
The remaining indices generate relationships between abundance and distribution even in cases where no underlying relation-
ships exists, although the problem decreases for measures derived from Lorenz curves when samples contain more than four
individuals on average. To illustrate the problem, the indices are applied to juvenile North Sea cod, Gadus morhua.

Résumé : De nombreuses études examinent la relation entre 1’abondance et la distribution a I’aide d’indices qui représentent
I’'un des trois aspects de la distribution, soit la proportion du territoire occupé, 1’agrégation et la répartition géographique.
Au moyen de simulations et de dérivations analytiques, nous vérifions si ces indices fournissent des estimations justes de la
relation lorsqu’ils sont basés sur des données de dénombrements. Les indices examinés incluent la proportion d’échantillons
vides, la proportion d’échantillons structurellement vides, le coefficient de répartition en taches de Lloyd, des mesures déri-
vées des courbes de Lorenz, telles que Dos et le coefficient de Gini, ainsi que des mesures basées sur la distance euclidienne
jusqu’au centre de gravité de la distribution spatiale. Seuls la proportion de sites structurellement vides, le coefficient de
Lloyd et les coefficients de distance au centre de gravité de la distribution spatiale restent non biaisés a tous les niveaux d’a-
bondance. Les autres indices génerent des relations entre 1’abondance et la distribution méme lorsqu’il n’existe pas de rela-
tion sous-jacente; cependant, dans le cas de mesures dérivées du coefficient de Lorenz, le probleme diminue lorsque les
échantillons contiennent plus de quatre individus en moyenne. Nous utilisons les indices avec des données sur de jeunes mo-
rues, Gadus morhua, de la mer du Nord pour illustrer le probleme.

[Traduit par la Rédaction]

Introduction

The relationship between abundance and distribution is a
key issue in fisheries management and ecology, as a popula-
tion that contracts into a small area at low abundance be-
comes highly vulnerable to both exploitation and climatic
changes. The contraction renders catch rates high in spite of
stock declines and has facilitated the overexploitation of sev-
eral fish stocks (Hamre 1978; Beverton 1990; Hutchings
1996). Furthermore, the presence or absence of contraction
affects the success of different management measures. A con-
tracting stock can be safeguarded through protecting the area
where the stock is concentrated, whereas stocks that become
increasingly dispersed as density declines will not obtain the
same beneficial effect of area-based management. In contrast,
measures such as effort limitation may be efficient for non-
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contracting stocks but have little effect on contracting stocks,
as sustained high catch rates will cause fishing mortality per
unit effort to increase as abundance declines. The relationship
is of even greater importance to stocks faced with climati-
cally induced decreases in stock size; the decrease in abun-
dance increases the risk of local extinction and the decrease
in the number of local aggregations increases the risk of
stock extinction (“double jeopardy”; Lawton 1996). Hence,
detecting the presence or absence of a concentration of the
stock as abundance declines is of great importance to suc-
cessful fisheries management in a changing environment.
Numerous studies have attempted to determine whether a
relationship between abundance and distribution exists in nat-
ural populations. Most of these studies are based on measur-
ing one or several of three different aspects of distribution: the
proportion of the distribution area occupied, aggregation, and
geographical range. In the case where the individuals can be
detected and counted without error, these aspects can be esti-
mated directly and related to abundance. However, in the ma-
jority of marine cases, complete census is impossible. Instead,
distribution is inferred from samples collected by nets, trawls,
and traps or from counts of individuals in a specified area of
the bottom. In these cases, the number of individuals detected
varies as a result of both random variation associated with
sampling and as a result of differences in local abundance.
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Spatial statistical analyses can be used to separate sam-
pling variation from changes in local abundance (Rivoirard
et al. 2000; Stelzenmiiller et al. 2005; Lewy and Kristensen
2009). However, to demonstrate a relationship between abun-
dance and distribution, simpler distribution indices are fre-
quently used. It is essential for the interpretation of the
results based on such indices that random variation due to
sampling does not generate a spurious link between the index
and abundance. Such a link will cause the index to change
when abundance changes even though the parameters of the
underlying distribution of the individuals remain the same.

This study presents a statistical investigation of the proper-
ties of a number of different indices frequently used to study
the relationship between distribution and abundance directly
from samples consisting of counts of individuals. The indices
are examined to determine whether they are statistically inde-
pendent of the mean number of individuals per sample when
the sampled number shows either a Poisson or negative bino-
mial distribution. When individuals are randomly distributed
in space, the Poisson distribution is the appropriate distribu-
tion to describe the variation in the number of individuals per
sample. However, when individuals are patchily distributed,
the number of individuals per sample will follow a negative
binomial distribution where the aggregation of individuals is
reflected in the size parameter k£ (Lloyd 1967; Taylor et al.
1988). The indices and the aspect of distribution they reflect
are listed in Table 1. Among the numerous published indices
of spatial distribution available, we include only those that
are frequently found in the literature and have been used to
infer abundance—distribution relationships directly from sam-
ples (without prior smoothing or transformation). The proper-
ties of these indices are investigated both analytically and by
simulation (Table 1). Further, the ability of the indices to de-
tect changes in distribution is investigated in situations where
the requirements of the indices with respect to statistical
properties and spatial independence of samples are violated.

pe+(1—pe)<k+Lm)k

k n
(1= pe)zf((n)zt(i)) <k +k m) (k ¥ m)

(1) Pregin(n) =

where k is the size parameter of the negative binomial distri-
bution. The parameters p,, k, and m can be estimated using
the R package zeroinfl (R Development Core Team 2010) or
by maximizing the likelihood function.

Aggregation

Lloyds index of patchiness

Lloyds index of patchiness is a function of the empirical
mean number of individuals per sample 7 and the sampling
variance s2 (Lloyd 1967):

201
(2) ILP:1+?—*

n

Unlike the proportion of non-empty samples, Lloyds index
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To illustrate the practical implications of using biased indi-
ces, we estimate the relationship between abundance and dis-
tribution of juvenile North Sea cod (Gadus morhua).

Distribution indices investigated

Area occupied

The proportion of an area that is occupied by a given spe-
cies is often determined from samples thst each contain a
number of individuals. The occupied proportion is assumed
to be equal to the proportion of samples that contain counts
of at least one individual (occurrence) or alternatively as the
proportion of samples containing more than a fixed number
of individuals. However, both of these indices are intrinsi-
cally linked to the mean number of individuals per sample
when individuals are randomly distributed in space (Muraw-
ski and Finn 1988; Hartley 1998; Swain and Sinclair 1994)
(Table 2) or in some proportion of space (Sileshi et al.
2009). Comparing occurrence with mean number of individ-
uals in non-empty samples only (Macpherson 1989; Eycott et
al. 2006; Webb et al. 2007) does not eliminate the link
(Wright 1991). Occasionally, empty samples occur through a
combination of random effects and sampling in truly empty
areas (structurally empty samples). In these cases, the relative
importance of the two types of empty samples can be esti-
mated using zero inflated Poisson and negative binomial dis-
tributions (Sileshi et al. 2009).

Assume that the data consist of individual counts in a
number of samples, N, of which a proportion p, are taken in
areas uninhabited because of, for example, adverse habitat
conditions or contraction of the population. If the individuals
within the inhabited area are distributed according to a nega-
tive binomial distribution with a parameter m reflecting the
mean of number of individuals in a sample, the probability
density function describing the probability of obtaining n in-
dividuals in a sample is

if n=0

if n>0

is independent of the mean number of individuals per sample
when applied to Poisson or negative binomially distributed
data (Lloyd 1967). Lloyds index of patchiness can be re-

garded as an empirical estimate of the true index 1 + % — %,
where m and o2 are the true mean and variance, respectively,
of the distribution. The index estimated from the empirical
mean and variance converges to the true index when the
number of samples increases towards infinity. The true index
takes the value 1 when the number of individuals in a sample
is Poisson distributed and takes the value 1 + 1/k when data
are negative binomially distributed, where k is the size pa-
rameter. In these cases, Lloyds index is approximately inde-
pendent of the mean (Lloyd 1967) and can hence be used to
compare patchiness of distributions with different means.
However, this property is not retained when the distribution
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Table 1. Overview of the measures investigated.

Can. J. Fish. Aquat. Sci. Vol. 69, 2012

Type Measure

Method used

Occupied area Proportion of empty samples

Proportion of samples containing more than a fixed

number of individuals
Proportion of structurally empty samples

Aggregation Lloyds index of patchiness”

Measures based on the area below the Lorenz curve

(Gini and A)

Measures based on points on the Lorenz curve (Dy)

Geographical spread  Average distance to centre of gravity

Area of the contour ellipse

Analytical derivation
Analytical derivation

Simulation” and subsequent estimation

Simulation” and subsequent estimation of maximum likelihood
and moment estimates

Simulation” and subsequent estimation

Simulation” and subsequent estimation
Analytical supplemented by simulation” to determine accuracy
Analytical supplemented by simulation” to determine accuracy

“Lloyds index of patchiness converges to 1 + 1/k when data are negative binomially distributed, where & is the size parameter in the distribution.

"Simulations varied in number of samples simulated (20 to 500), the mean number of individuals per sample (0.1-10), and the distribution across samples
to ensure that the greatest possible resolution was obtained in the region with significant bias. Simulations did not cover parameter combinations with constant
bias (high densities) or for which bias could not be estimated (very low densities).

Table 2. The relationship between mean m and two indicators of aggregation (proportion
of empty samples and Lloyds index of patchiness) for a range of statistical distributions.

Distribution Variance Proportion of zeros  Lloyds index
- ; " 1
Binomial m(1—1) (1-m) -2
Poisson m e 1
Negative binomial m’ k \k 1
& m+ % () T+
Geometric m(m - 1) 1 2(1 — l)
a 2 8 " 1
2
Normal o 1+ -1
Log-normal” 2 (ea2 _ 1) 0 e -1
: 1
Gamma* ms 0 I+1(s—1)
Exponential m? 0 -1
m
“o* denotes the variance.
b* denotes the log variance.
“s denotes the scale parameter.
differs from that of a binomial, Poisson, or negative binomial npy, ..., Npyp) are the observations in descending order. Hence,

distribution (Table 2). For individuals distributed according
to the continuous lognormal and gamma distributions, Lloyds
index depends on the mean, except in the special case where
the gamma distribution has the scale parameter 1 (Table 2).

Lorenz curves

A Lorenz curve is the cumulative distribution of the sam-
ples ordered by ascending size. Indices based on Lorenz
curves include the minimum area containing a fixed percent-
age of the population, D), and the Gini index (Poulin 1993;
Swain and Sinclair 1994; Woillez et al. 2007, among others).
The indices describe aggregation as the difference between
the observed distribution and a distribution where every sam-
ple contains the same number of individuals.

The measures Dsy, D75, Doy, and Dys, together denoted D,,
are defined as the minimum area containing y% of the indi-
viduals and is determined by a point on the Lorenz curve
(Fig. 1). D, can be estimated by

3/100—z(1y)
_ ly + Zz[,v*l)*z(ly)

N
where z(l,) = S8 ng/ SO, m, 1 fulfil that z(4) < 1 — y/
100 < z(l, + 1), N is the number of observations, and (73,

(3) Dy

RIGHTS LI N Kiy

z(ly) is the proportion of all individuals recorded in the smal-
lest [, samples. It is assumed here that the observations repre-
sent equally sized areas. D, takes values between zero and y/
100. If D, is zero or close to zero, the individuals are concen-
trated in a few samples. Conversely, if D, = y/100, all sam-
ples take equal values. Hence, increasing aggregation results
in a decrease in Dy. The indices Dsgy, D7s, Doy, and Dgs were
introduced by Swain and Sinclair (1994) and have subse-
quently been reintroduced by Atkinson et al. (1997) and An-
derson and Gregory (2000).

Another commonly used measure based on Lorenz curves
is the Gini index, G, defined as twice the area between the
Lorenz curve and the diagonal (Fig. 1). The index is derived
from socioeconomics and ranges from 0O to 1. It takes the
value 0 when all samples are equal and 1 when all individu-
als are recorded in a single sample. It is estimated as

N—1
D iN = i)y — o)
4 G== "
(N — 1)2 ni

where N is the number of observations, and (n), nep), ...,
n(y)) are the observations in ascending order. As above, the
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observations are assumed to represent equally sized areas.
Another measure that is occasionally used is the area A be-
low the Lorenz curve (Laurel et al. 2004; Woillez et al.
2007). This area can be expressed directly as (1 — G)/2, and
therefore the bias in this index can be estimated directly from
that of the Gini index. The Gini index and the area below the
Lorenz curve have the advantage compared with indices
based on single points on the Lorenz curve (such as Dys), as
they integrate aggregation over the entire Lorenz curve and
therefore alleviate the need to examine a range of indices
(e.g., D50, Dgo, and Dgs).

Geographical spread

Indices of the geographical spread are defined here as indi-
ces that depend on the geographical distribution (e.g., latitude
and longitude) and include the minimum and maximum lati-
tude at which the species is observed (Gaston 1991), the
average distance to the centre of gravity of its distribution
(Murawski and Finn 1988; Marshall and Frank 1994), and in-
dices based on contour ellipses (Atkinson et al. 1997; Brodie
et al. 1998, Woillez et al. 2007). Minimum and maximum
observed latitude are intrinsically linked to mean abundance
and can therefore not be used to estimate the relationship be-
tween the two (Brown 1984).

Murawski and Finn (1988) suggested measuring the geo-
graphical spread of a population as the average distance d
from an individual sampled to the centre of gravity of all
samples:

N
> midist(i, C)
d = i=0

where dist(i, C) is the geographical distance between the lo-
cation of sample i and the centre of gravity C, n; is the num-
ber of individuals in sample i, and N is the number of
samples taken. Their hypothesis was that a concentration of
the population would lead to a decrease in the average dis-
tance to centre.

A similar measure is the average squared distance to centre
of gravity of latitude and longitude of individuals (also
termed inertia; Woillez et al. 2007):

zN:n,-[dist(i, o))
=0

2
N N

i=0

which together with the covariance between weighted lati-
tude and longitude can be used to construct contour ellipses
(Atkinson et al. 1997). If individuals are normally distribu-
ted in space, the area of the contour ellipse can be used di-
rectly as an estimate of the area containing a certain
percentage of the population. The area can be calculated
from the average squared distance to the centre and the cov-
ariance between the distance in latitudinal and longitudinal
directions (as shown in Appendix A). Clearly, d, s2, and the
area of the contour ellipse are heavily dependent on the dis-
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Fig. 1. Illustration of the Gini index (G) and D). The Gini index is
twice the grey area or, equivalently, 1 — 2A, where A is the area be-
low the Lorenz curve, L(x). As indicated on the figure, Dy is deter-
mined by the first coordinate of the point (x, 1 — y/100) on the
Lorenz curve (Dy = 1 — L7'(1 year/100)). Values on the x axis can
be the cumulative proportion of samples as shown here, the cumula-
tive number of individuals used in socioeconomics, or the cumula-
tive area used by Swain and Sinclair (1994).
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tribution of sampling sites. If sampling at a given time is
only conducted in, say, the southern half of the usual sam-
pling area, the average distance to centre and the area of the
contour ellipse will both decrease even when no change in
distribution occurs.

Materials and methods

Area occupied

The proportion of empty samples as a function of mean
sample sizes when no areas were structurally empty was es-
timated directly from the relationships in Table 2. To inves-
tigate the case where a significant proportion of the samples
are taken in structurally empty areas, accuracy and bias of
the estimate of p, was investigated by simulating binomial
distributed samples with a probability of 0.25 of being struc-
turally empty (p.). For the nonstructurally empty samples,
number of individuals in each sample was simulated as neg-
atively binomial distributed observations with a given size
and mean. For each number of samples (250 and 500),
mean (1, 2,..., 10), and k£ (0.5, 1 and 2), 1000 data sets
were simulated, and the mean and the 2.5% and 97.5% quar-
tiles of p, were estimated using maximum likelihood estima-
tion in R (R Development Core Team 2010). The number of
samples was initially set at lower values to allow direct com-
parison with the other measures, but this resulted in esti-
mates of 2.5% and 97.5% quartiles p,, which included the
full range (0-1), and hence the number of samples had to
be increased.

Published by NRC Research Press
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Aggregation

Lloyds index of patchiness

Lloyds index can either be estimated from moment esti-
mates (eq. 2) or from maximum likelihood estimates of k
(Lloyds index = 1 + 1/k). We used simulations to estimate
the bias of the two different estimates at different number of
samples (20, 40, ..., 100), mean (0.1, 0.3, ..., 0.9, 1.0, 1.5,
..., 3.0), and k (0.1, 0.2, 0.5, and 1). First, we simulated neg-
ative binomial distributed samples at all combinations of
number of samples, mean, and k. We then used these data to
estimate Lloyds index from moments and maximum likeli-
hood estimates of k. 1000 data sets were generated for each
combination and the median, 2.5%, and 97.5% quantiles of
the estimates estimated for each method. A number of the
simulations resulted in a total number of individuals < 2 in
the data set, and the parameters were therefore not estimable.
These data sets were discarded. This occurred in a maximum
of 30% of all cases.

Lorenz curves

We used simulations to estimate the indices for data from
different distributions and parameter combinations. We re-
stricted the analyses to statistical distributions of counts only
and used a constant density in all areas and then sampled
data assuming a Poisson or negative binomial distribution. A
total of 10 000 samples were simulated at each average den-
sity. Average density varied between 0.1 and 10, and k varied
between 0.1 and 1.

Geographical spread

To investigate the bias and precision of the indices of geo-
graphic range, we considered the estimate in one dimension
with no loss of generality. The centre of gravity, C, the aver-
age distance, d, and the area of the contour ellipse (equiva-
lent in the one-dimensional case to the square root of the
average squared distance to centre) estimated from samples
can be shown analytically to be unbiased or approximately
unbiased, and the geographical spread of the underlying dis-
tribution does not affect their coefficient of variation, CV
(Appendix A). The effect of varying mean density, standard
deviation of the distribution of the underlying spatial distri-
bution, and number of sampling locations on the uncertainty
of d and s? estimated from samples were investigated using
simulations. In these analyses, density was assumed to follow
a normal distribution in the interval I = (-10; 10) with a
centre of gravity equal to zero. Average density was changed
by multiplying densities throughout the interval by a con-
stant. Density A(x) at each location x in the interval was cal-
culated at n equidistant locations, and observations Y(x;) ... Y
(x,) were generated assuming Y(x) to be Poisson distributed
with mean A(x); d and s were then calculated using the gen-
erated observations. This was repeated 1000 times and the
standard deviation of the indices estimated. Three values of
geographical spread (standard deviation in the underlying
normal distribution = 1, 2, and 3) and sampling intensity
(number of samples = 20, 50, and 100) were investigated at
mean densities ranging from 1 to 10.

Failing to meet assumptions
The distribution of individuals in space is rarely random

RIGHTS LI N Kiy
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Fig. 2. Bimodal distribution in space. Solid line, high density distribu-
tion with Dos = 0.74; short dashed line, low density distribution with
Dos = 0.74; long dashed line, low density distribution with Dos = 0.39;
dash-dotted line, low density distribution with Dos = 0.54.
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with a common mean in all areas. To investigate the effect
of a more ecologically likely spatial distribution, we investi-
gated the ability of Lloyds index, the area of the contour el-
lipse, Dos, and the Gini index to detect changes in
aggregation of individuals with a bimodal spatial distribution
(Fig. 2). We estimated the indices based on 500 simulated
surveys sampling at 300 equidistant points along the distribu-
tion. Samples were drawn from a negative binomial distribu-
tion with a spatially varying mean described by the bimodal
distribution and a common size parameter k = 0.4. Two dif-
ferent effects of a decrease in abundance were investigated:
proportional decrease in all areas (proportional density
model; Hilborn and Walters 1992; Shepherd and Litvak
2004) and disproportional decrease in low abundance areas
(constant density and basin model; Hilborn and Walters
1992; Shepherd and Litvak 2004). Furthermore, the effect on
the indicators of increasing the level of aggregation of the
underlying spatial distribution was investigated. The level of
aggregation of the underlying spatial distribution (Fig. 2)
was quantified by estimating Dos of the underlying (true) dis-
tribution. Dgs is an unbiased index of aggregation in this
case, as the distributions are continuous normal distributions
unaffected by sampling error (Swain and Sinclair 1994)
rather than the number of individuals observed in samples.
To be a reliable index, there must be a tight relationship be-
tween the index and Dys, and index values obtained at other
average densities should fall inside the quantiles (correspond-
ing to no falsely detected changes in distribution).

Data example: North Sea cod

The data used to illustrate the problems resulting from
using biased indices consisted of survey catch rates of 1-
year-old cod derived from catches in the International
Council for the Exploration of the Sea (ICES) International
Bottom Trawl Survey (ICES International Bottom Trawl
Survey Database, February 1983 to 2010, http://www.ices.
dk). Haul duration generally varies between 0.5 and 1 h,
but to assure that catch rates were comparable, only hauls

Published by NRC Research Press
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lasting between 25 and 35 min were used in this study. The
survey follows a stratified-random design with two hauls
taken within each ICES statistical rectangle (0.5° latitude X
1° longitude) on average. Catch of 1-year-old cod was esti-
mated by applying an age—length key to the observed catch
at length. If the total number of fish caught of all ages is
negatively binomial distributed, multiplying this number
by a fraction results in a number that is not strictly dis-
cretely distributed. In our study, we focused on 1-year-
olds, as their length distribution is generally well separated
from older fish, and hence the assumption of observing an
integer is reasonable. There were, however, cases where a
caught fish was of a length with a significant probability
of being age 2. In these cases, we rounded the number
caught to the nearest integer. We believe that the error in-
troduced by this is small compared with the variation we
would introduce by examining the total (integer) number
of cod caught of all ages.

From catches of 1-year-old cod, we estimated mean catch
rate, Lloyds index, the proportion of empty samples, Dgs, the
Gini index, average distance to centre, and the area of the
contour ellipse (P = 0.40) for every year. The proportion of
structurally empty samples was not estimated because of the
low accuracy at low values of k. For the two geographic in-
dices, catch rates were averaged within statistical rectangles
prior to estimation to avoid bias due to changes in sampling
intensity. Finally, a model of the form In(measure) = a + b X
In(mean catch) was fitted, and the statistical test of b = 0 was
performed.

Results

Area occupied

The intrinsic link between mean sample size and the pro-
portion of nonzero samples diminishes rapidly with increas-
ing mean if individuals are Poisson distributed. At a mean
sample size of 5, the proportion of nonzero samples is
greater than 0.99 (Table 2, Fig. 3). However, if data are neg-
ative binomial distributed, the problem caused by “false”
empty samples alone is aggravated (Fig. 3). Hence, conclu-
sions regarding distribution can only be based directly on the
occurrence of nonzero samples when the mean number of in-
dividuals per sample is large (>4 for Poisson distributed data,
>10 for negative binomial distributed data), and the probabil-
ity of obtaining zero samples by random effects alone is
small.

The maximum likelihood method provides unbiased esti-
mates of p, (bias on average 2% with no trend), which are
reasonably precise for mean sample sizes above 5 (Fig. 4).
The precision of the method relies on both mean and size pa-
rameter of the negative binomial distribution. Hence, distri-
butions with low mean or a size parameter below 1 are
unlikely to provide precise estimates of p, unless the number
of samples is very large.

Aggregation

Lloyds index of patchiness

The moment estimate of Lloyds index of patchiness was
consistently biased at high index values (>2), even in the
200 samples case (Fig. 5). In contrast, the bias in the maxi-
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Fig. 3. Proportion of non-empty samples as a function of mean
number of individuals in a sample for Poisson (solid line) and nega-
tive binomially distributed observations (broken lines).
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mum likelihood estimate was small when more than 40 sam-
ples were taken and the mean exceeded 0.5 (Fig. 5). When
the number of samples exceeded 100, the maximum likeli-
hood estimate was approximately unbiased for all means.
The variation in both estimates was large when Lloyds index
was large or mean was small, but consistently larger for mo-
ment estimates than for maximum likelihood estimates (Ap-
pendix A). When setting the acceptable upper limit for the
CV of the estimate at 20%, none of the two methods are suf-
ficiently accurate to allow the estimation of Lloyds index
from less than 60 samples at any value of k (Appendix A).
Hence, to estimate Lloyds index, it is a requirement that the
number of samples taken is large, and this is increasingly im-
portant as either the mean or k decreases. Further, it is pref-
erable to use maximum likelihood estimates of k rather than
moments to estimate the index.

Lorenz curves

Dys and the Gini index are both highly dependent on the
mean at low mean numbers of individuals in a sample
(Fig. 6). If the distribution of individuals is known without
error, Dgs or the Gini index can obviously be calculated with-
out bias using eqgs. 3 and 4, respectively. However, this is
rarely the case, and when observations are subject to sam-
pling variation, indices based on Lorenz curves are systemati-
cally biased when the mean number of individuals per
sample is below 4 (Fig. 6).

Geographical spread

Though both indices are unbiased, the CV of both d and s?
increases as average density is decreased (Fig. 7). The effect
is greatest at average densities below 5 but levels off at aver-
age densities between 5 and 10. As expected, increasing the
number of samples taken decreases the CV of the indices,
and with a sampling intensity of 100 samples, the CV of d
and s2 remains below 0.08 and 0.15, respectively, even at an
average density of 1. The spread of the underlying distribu-
tion does not affect the CV of d and s? (Fig. 7). However,
their precision depends heavily on sampling intensity and
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Fig. 4. Estimated uninhabited proportion of samples from simulated data where the true proportion, pe, is 0.25. Panels show the number of
simulated samples (250: panels a, b, and c; or 500: panel d) and size parameter k of the negative binomial distribution (0.5, panel a; 1,
panel b; and 2, panels ¢ and d). Solid line denotes the mean and broken lines are 2.5% and 97.5% quantiles.
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mean density, and the CV increases as average density or
sampling intensity is decreased (Fig. 7).

Failing to meet assumptions

In spite of the fact that the data were not derived from a
negative binomial distribution, the maximum likelihood esti-
mate of Lloyds index reflected both the direction and level of
change in distribution accurately (Fig. 8). There was a tight
relationship between Lloyds index and Dy of the underlying
distribution, indicating that these indices reflect the same as-
pect of the distribution (Fig. 8). Though both Dgs and the
Gini index produced values with a tight relationship with the
underlying distribution, their actual values were far from that
of the underlying distribution (Figs. 8» and 8c). Furthermore,
varying only density produced indices outside the quantiles
though no change in distribution occurred (Fig. 8). The pro-
portional density model (Dys = 0.74 at different means) pro-
duced values of Lloyds index that did not differ significantly,
confirming the absence of bias in this measure. The differ-
ence between the distributions caused no change in ellipse
area, and this indicator did not reflect any of the changes in
the bimodal distribution. Hence, only Lloyds index fulfilled
both of the requirements to the index, as it reflected distribu-
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tional change and was robust to changes in abundance in the
absence of changes in distribution.

An overview of the indices investigated and their ability to
provide unbiased estimates of the relationship between abun-
dance and distribution and their sensitivity to violations of
the assumptions is provided (Table 3).

Example: North Sea cod

The conclusions reached differed widely depending on
whether biased or unbiased indices were used (Fig. 9). If the
proportion of empty samples or Dgs was used as the indicator
of the distribution, one would draw the (erroneous) conclu-
sion that the area occupied is decreasing as abundance de-
creases (Figs. 9d and 9f; P < 0.01 in both cases). In contrast,
there is no significant relationship between abundance and ag-
gregation or between abundance and geographic extent when
the unbiased indices are used (Figs. 9a, 9b, and 9c; P > 0.05
in all cases). The Gini index showed no significant relation-
ship with the mean (Fig. 9¢; P = 0.3238) and would thus not
have produced a false positive in this case. Though the rela-
tionship between the mean of the two was not significant, var-
iation in both Lloyds index and average distance to centre
appeared to increase as mean catch decreased.
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Fig. 5. Median bias of Lloyds index of patchiness estimated by moment estimates (¢ and b) and maximum likelihood & (¢ and d). Effect of
varying the true Lloyds index on bias when the number of samples taken is 40 (a and c): Lloyds index = 2 (solid), 3 (dash-dotted),

6 (dashed), and 11 (dotted); and effect of varying the number of samples taken when the true Lloyds index is 6 (b and d): number of sam-
ples = 20 (dotted), 40 (thin dashed), 60 (dash-dotted), 80 (thin solid), 100 (thick dashed), and 200 (thick solid).
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Fig. 6. Gini index (@) and Dos (b) as a function of mean for different error distributions: binomial (sample size = 20: solid line, marked B),
Poisson (broken line, marked P), and negative binomial (remaining broken lines) with different values of k.
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Discussion

We have shown here that a number of frequently used in-
dices of distribution are intrinsically linked to the mean sam-
ple size when the mean is small. Using such indices may lead
to the conclusion that a change in distribution has occurred
when in fact there has only been a change in bias. Apart
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from the effect that this has on the understanding of the ecol-
ogy of individual species, it may lead to inefficient conserva-
tion of natural populations if conservation management is
erroneously based on assumptions of aggregation at low
stock size. The problem can be avoided by using the propor-
tion of structurally empty areas, Lloyds index, and the area of
the contour ellipse as indices of area occupied, aggregation,
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Fig. 7. Investigating the effect of sampling on the bias of the measured mean squared distance to centre s2. Data include median bias ((esti-
mated index — true index)/true index; middle line) and 2.5% quantile (bottom line) and 97.5% quantile (top line) of bias. (a) Effect of spread
of the underlying distribution: standard deviation = 1 (solid line), 2 (dashed line), and 3 (dotted). Number of samples = 50 in all cases.

(b) Effect of number of sampling sites along the transect: 20 (solid), 50 (hatched) and 100 (dotted). Standard deviation of the underlying
distribution = 2 in all cases.
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Fig. 8. Relationship between Dos of the underlying distribution and Lloyds index (a), Dos (b), Gini index (c), and the area of the contour
ellipse (d) estimated from simulated samples of the population. Diamonds, estimated mean index; dashed lines lines, 2.5% and 97.5% quan-
tiles of the estimated index; solid line, power function describing the relationship between the two; dash-dotted line, values of the underlying
(true) distribution (Dgs and Gini index only). All solid symbols depict indices estimated at an average density of 4.9, while open symbols are
derived from average densities varying between 1.2 and 9.9 at a constant Dos of 0.74.
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Table 3. Overview of the bias of all measures and requirements of unbiased measures.

391

Type Measure Biased? Requirements
Occupied area  Proportion of empty samples Approximately unbiased when
mean > 5
Proportion of structurally empty samples No Large number of samples,
mean > 3 and k£ > 1
Proportion of samples containing more than a  Yes
fixed number of individuals
Aggregation Lloyds index of patchiness (moment estimate)  Yes
Lloyds index of patchiness (maximum Approximately unbiased when Poisson or negative binomial
likelihood estimate) number of samples > 100 distributed data
Measures based on points or area below the Approximately unbiased when
Lorenz curve (Dy, Gini, and A) mean > 4
Geographical Average distance to centre of gravity No but CV large when number of Constant area sampled and
spread samples < 100 unimodal spatial distribution

Area of the contour ellipse

No but CV large when number of

samples < 100

Constant area sampled and
unimodal spatial distribution

Fig. 9. Relationship between abundance and distribution of juvenile Atlantic cod in the North Sea using unbiased (a, b, and ¢) and biased (d,
e, and f) measures of distribution.
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and geographical spread, respectively. However, although
these indices are unbiased, they all showed consistent in-
creases in variance at low mean sample size. Furthermore,
the proportion of structurally empty areas was effectively im-
possible to estimate at values of k generally observed in anal-
yses of marine fish (Murawski and Finn 1988; this study)
unless the number of samples was very large and the area of

Average catch

in occupied area.

(c) »

*

15 20 25 30

15 20 25 30

the ellipse only revealed changes in unimodal distributions.
Lloyds index was remarkably robust to changes in the under-
lying distribution and would appear to be the best choice for
low-mean data. It furthermore also reflected modest changes

Lloyds index is robust to deviations from a negative bino-
mial distribution. However, two conditions must be fulfilled
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for the estimator to remain unbiased. Firstly, estimating the
common form of Lloyds index on non-empty samples only
(Hewitt 1981; Stabeno et al. 1996) provides biased results
(Bradbury et al. 2003), and eq. 1 or Lloyds index for positive
samples (k;; Lloyd 1967) should be used instead if there are
structurally empty samples. Secondly, the observations used
must be counts rather than concentrations. Concentrations
are often used, in particular when the sampled volume is un-
equal between samples (McGurk 1986; Stoffels et al. 2003;
Bez 2000). However, the derived concentrations are not neg-
ative binomial distributed counts, and Lloyds index is there-
fore no longer independent of the mean (Appendix A).
Furthermore, the problems with small counts are retained
when numbers are divided by, for example, volume of water
filtered. This means that the bias in Dys and the Gini index is
retained (Appendix A).

To justify the use of the proportion of non-empty samples
as a measure of occupied area, two statements are frequently
made: The first claim is that it is impossible to distinguish
true zeros from false (Hewitt 1981; Hanski et al. 1993; Gas-
ton et al. 1998). It is clear from this and other studies (Lloyd
1967; MacKenzie et al. 2003; Sileshi et al. 2009) that it is
indeed possible to estimate the proportion of true zeros in
many cases. The second is that for an area to be occupied,
there must be at least one individual present in the samples.
However, if a species is wide ranging, samples with fewer
than one individual will occur by chance when one or more
individuals spend only part of their time in the area or when
the probability of detecting an individual is less than 1. It is
clear that if there are only a few specimens left of the spe-
cies, these few specimens are unlikely to inhabit the entire
area. However, the question is not whether the few remaining
specimens occupy all areas but rather whether we would be
able to detect a change in their distribution. In the case where
we observe one or two specimens, their distribution will pro-
vide us with virtually no information of the distribution of
the population. Hence, our conclusion in this case must be
that the species is rare and that the current distribution cannot
be evaluated because of the low number of observations. The
result of the general acceptance of the two statements is that
the intrinsic correlation between the abundance and propor-
tion of non-empty samples is often ignored (Planque and
Fromentin 1996; Blackburn et al. 1998; Freckleton et al.
2006, among others), though some authors have tried to
avoid the problem by comparing occurrence with mean num-
ber of individuals in occupied samples only (Macpherson
1989; Eycott et al. 2006; Webb et al. 2007). The latter proce-
dure does not eliminate the problem (Wright 1991) though it
does decrease the correlation between abundance and occu-
pancy considerably (Wilson 2008, 2011), in some cases lead-
ing to negative relationships (Blackburn et al. 2006; Wilson
2011).

Biased distribution indices have been used in studies in a
wide number of ecological groups, including parasites (Pou-
lin 1993), plants (Eycott et al. 2006), invertebrates (Foggo et
al. 2003), fish (Blanchard et al. 2005), birds (Zuckerberg et
al. 2009), and mammals (Holt and Gaston 2003), and it is
likely that they have seriously affected the conclusions in a
number of cases. For example, Winters and Wheeler (1985)
and Saville and Bailey (1980) used the area fished by com-
mercial fishermen as a measure of distribution, a measure
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that is likely to be equivalent to the area in which a catch
rate higher than some minimum level can be obtained.
Crecco and Overholtz (1990) used the proportion of the area
where survey catch rate was above a fixed level. However, as
the proportion of samples that contain more than a fixed
catch is linked directly to mean density, the relationship be-
tween abundance and distribution cannot be derived from
these studies. Turning to indices based on Lorenz curves,
studies of species showing low mean catch rates or greatly
skewed data have demonstrated significant relationships be-
tween abundance and both Dgs (Fisher and Frank 2004;
Blanchard et al. 2005) and the Gini index (Laurel at al.
2004) of the type shown herein.

The example of cod in the North Sea illustrates the effects
of using biased indices to estimate abundance—distribution re-
lationships. Had we used only the proportion of empty sam-
ples and Dgs, we would have concluded that cod concentrated
in a few areas as density declined. However, this conclusion
is caused by the use of biased indices rather than by changes
in distribution as is evident when we use unbiased indices to
investigate the abundance—distribution relationship. Even if
we had used unbiased indices, we would have been tempted
to conclude that though cod did not aggregate, they exhibited
a greater variability in aggregation behaviour at low density.
However, it is clear from the simulation studies that this type
of increase in variance is to be expected from the decreased
accuracy of the estimator even in the absence of a change in
aggregation. The lack of change in aggregation of juvenile
cod as density declines is in accordance with a study of this
species in Placentia Bay, which found no significant differ-
ence in k (Robichaud and Rose 2006). Similarly, Murawski
and Finn (1988) found no significant correlation between
average distance to centre and abundance of age 0 and 1+
on Georges Bank. Older cod off the east coast of Canada
showed pronounced aggregation as density declined, and the
proportions of high catch rates remained virtually constant as
abundance declined (Hutchings 1996). Similar aggregative
relationships have been found for southern Gulf of St. Law-
rence cod age 3 and older (Swain and Sinclair 1994). Deter-
mining whether these differences in aggregative behaviour
are caused by ontogenetic shifts in behaviour or by differen-
ces between stocks will require more detailed analyses of un-
biased abundance—distribution relationships.

In conclusion, we recommend that the frequency distribu-
tion and mean of the samples is examined in detail before de-
ciding on an unbiased measure of distribution. The
proportion of empty samples should not be used to estimate
abundance — occupied area relationships in any case. Instead,
the proportion of structurally empty samples can be used to
estimate empty areas except in cases where the data are
highly skewed. In these cases, it is not possible to estimate
the proportion of structurally empty samples unless the num-
ber of samples is very large (>500), and even in this case,
mean sample sizes < 1 are unlikely to provide reliable re-
sults. If the mean number of individuals in the samples is
>4, Dys or the Gini index should provide approximately un-
biased results of the relationship between abundance and ag-
gregation. Both indices are furthermore unbiased if applied to
smoothed data derived from a spatial model (Swain and Sin-
clair 1994; Lewy and Kristensen 2009). The average distance
to centre, the average squared distance to centre, and the area
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of the ellipse should only be used as indices of geographical
spread when the spatial distribution is strictly unimodal, as
these indices are insensitive to changes in other distributions.
For indices of aggregation based on count data, Lloyds index
estimated using maximum likelihood methods is the prefera-
ble choice, possibly supplemented by the area of the ellipse
to indicate geographical spread when the distribution is uni-
modal. Both indices are unbiased down to very low mean
samples sizes and suffer only from increased variation as
mean sample size is reduced.
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Appendix A

Bias in Lloyds index estimated by moments and
maximum likelihood

Figures Al and A2 show bias and accuracy of estimates of
Lloyds index of patchiness based on moments (eq. 2; Fig. Al)
or maximum likelihood estimates of k (Fig. A2).

Estimating the area of the contour ellipse and bias of C
and d due to sampling error

The area of the contour ellipse A, containing p percent of
the observations can be estimated as

Ap = cpy/sts3(1 = p?)

where ¢, = x*2), 7, and s, and s, are the standard deviations in
the x and y directions and where p is the correlation coefficient.

To compare distribution with abundance, only an index of
geographical distribution is needed, and it is of no conse-
quence what probability level is used (the x? value), since this
is simply a scaling factor. In the example given below, we
have used ¢, = 1 without lack of generality. The area of the
contour ellipse is independent of the mean number of individ-
uals in a sample and of mean in the x and y directions because
this is the case for both standard deviations and correlation.

To investigate whether the measures C and d and the area
of the contour ellipse are unbiased, we consider the one-
dimensional case for which A(x) denotes the intensity of a spe-
cies distributed on the x axis in a given interval, /. In this case,
an unbiased estimate of s is equivalent to an unbiased estimate
of the contour ellipse. The true centre of gravity (Cyye), aver-
age distance to centre (dy,.), and variance (stzme) are

oo S xn(x)dx
true — fIA’ (x) d_x
Jlx = C|n(x)dx
dtrue = T A ~Ng.

S (x)dx
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Fig. A1l. Bias and accuracy of estimates of Lloyds index of patchiness based on moments (eq. 2). Data for median bias ((estimated index —
true index)/true index; solid line), 2.5% quantile and 97.5% quantile of bias (dashed lines) of 1000 simulations for each combination of num-
ber of samples, mean, and k are shown. Horizontal dashed lines indicate 0.4, corresponding roughly to a coefficient of variation (CV) of the

index of 20%.

Number of samples

, 20 40 60 80 100 200

i

3 00 10 20 30 00 10 20 30 00 1.0 20 3.0

2 1 1 1 1 1 L1 1 1 1 1 11 1 1 1 1

i 104 Tva % R ' '

> : Yoo | NpSene cmenk T N o] Snemsgradsi] %

5 L 2 WO SR AR NSO, SO vl N

]

§ 0.0

3 — e

§ -0.5 _'_:/"“““"-“./('-'.'—::-'"'ﬁ'_':::::::/:j:_" '''''''''''' | ""_'_'_'_'.'.'.T""""-"_-'_"_'

g i) :'--‘ ) ,’I o i "

; -1.0 4==2*" =it : ] 4

) \ \ ) X T . -

E \__-‘\\ \"‘.,___“_ Nt i e .._’. ; . — \

2 e T R T R SEE Yo
>

> g

) £

5 B

- >

: L2)

) 4

N> =

= ®

- O ©

3 o

=

) e

) @©

5

Eg _10_‘- - - ' 4 i

;Q- ' S p ¥ ] \ -

) &= b \\ ' S s i

L Ve T '\ % X 1

) -

é LI rrrriTi IIlllIH

; 00 10 20 30 00 10 20 30 00 10 20 3.0

§ Mean

§

)

] [,(x = C)*A(x)dx

-’ e = T S b - Cik

. true X; — .

) S (x)dx — 1 ' |x; i

] d=-!

- Now assume that we have observations at N locations and Ao

: denote the density at location x;

]

’ A = A(x;)

The centre C, average distance to centre d, and variance s2
based on the locations x;—xy are correspondingly estimated

by

in)‘-i
i

Ao

C =

RIGHTS LI N Kiy

Z(Xi — C)z)\,i

i

Ao — 1

0.1

0.5
0.0 1

-0.5

where A, = > ;A;. We now assume that the observed densi-
ties »; include sampling noise.

The estimated centre, average distance to centre, and aver-
age squared distance to centre based on the observations 7;
... n, are then
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Fig. A2. Bias and accuracy of estimates of Lloyds index of patchiness based on maximum likelihood estimates of k. Data for median bias
((estimated index — true index)/true index; solid line), 2.5% quantile and 97.5% quantile of bias (dashed lines) of 1000 simulations for each
combination of number of samples, mean, and k are shown. Horizontal dashed lines indicate 0.4, corresponding roughly to a coefficient of
variation (CV) of the index of 20%.
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Bias in Lloyds index

...10 —
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where 7, = > _;n;. We assume that the observations for given
densities are independent Poisson distributed variables, i.e.,
that

n;|A; ~ Poisson(A;)

and hence E(n;) = A;fori=1,..., N. o

For the Poisson case, it can be shown that C, d, and 5 are
unbiased estimates of C, d, and s, respectively, i.e.,
E(C) = C, E(d) = d, and E(5*) = s*.

Using the fact that the Poisson distributed variables n;
... n, for given sum 3} .n; = n, follows the multinomial dis-
tribution with the number of trials equal to 7,, probabilities
#, and mean E(n;]n,) = n,3%, we find that
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Fig. A3. Lloyds index (a), Dos (b), and the Gini index (c¢) estimated from concentrations in simulated samples with data derived from a

negative binomial distribution with constant size parameter.
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where E, denotes expectation with respect to the distribution
function of n,.

This proves the statement for the Poisson case. For any
other distribution for which E(n;) = A;, the three quantities
are at least approximately unbiased, as both the numerators
and the denominators of the quantities are unbiased.

As the number of observations tends towards infinity,
E(E’), E(g), and E(Ez) tend towards the true values Ciye,
dirue, and slzme, respectively.

Bias when estimating Lloyds index, Dys, and the Gini
index from concentrations

To demonstrate that the bias in Dys and Gini is retained
even when transforming count data to concentrations by di-
viding with an uneven volume and that this also biases

RIGHTS LI N Kiy

ZLX,‘ — 6|)\,,

1 ~ A F
= E7 — i C o | — — d
e <77-2i:|x I l.) ™

Lloyds index, a simulation study was performed to resemble
an experiment with 25 samples of 1 L, 50 samples of 2 L, 50
samples of 3 L, and 25 samples of 4 L. The number of indi-
viduals in 1 L follows the negative binomial distribution with
a fixed mean and size = 0.4. Hence, the number of copepods
in 2 L was simulated as the sum of two simulations from a
negative binomial distribution with mean m and size 0.4 and
so forth. Concentrations were then estimated by dividing the
simulated number of individuals by the volume of the sample
(2 L in this case). After simulating concentration in all 150
samples, Lloyds index (moment estimate), Dos, and the Gini
index were estimated. The simulation and estimation was per-
formed 500 times, and the mean, 2.5, and 97.5 quantiles of
each indicator were estimated (Fig. A3). It is clear that all
three indicators show a change in aggregation, though the
patchiness of the underlying distribution remains unchanged.
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