9 research outputs found

    Assessment of the effect of continuous theta burst stimulation of the motor cortex on manual dexterity in non-human primates in a direct comparison with invasive intracortical pharmacological inactivation

    Get PDF
    Non-invasive reversible perturbation techniques of brain output such as continuous theta burst stimulation (cTBS), commonly used to modulate cortical excitability in humans, allow investigation of possible roles in functional recovery played by distinct intact cortical areas following stroke. To evaluate the potential of cTBS, the behavioural effects of this non-invasive transient perturbation of the hand representation of the primary motor cortex (M1) in non-human primates (two adult macaques) were compared with an invasive focal transient inactivation based on intracortical microinfusion of GABA-A agonist muscimol. The effects on the contralateral arm produced by cTBS or muscimol were directly compared based on a manual dexterity task performed by the monkeys, the “reach and grasp” drawer task, allowing quantitative assessment of the grip force produced between the thumb and index finger and exerted on the drawer's knob. cTBS only induced modest to moderate behavioural effects, with substantial variability on manual dexterity whereas the intracortical muscimol microinfusion completely impaired manual dexterity, producing a strong and clear cortical inhibition of the M1 hand area. In contrast, cTBS induced mixed inhibitory and facilitatory/excitatory perturbations of M1, though with predominant inhibition. Although cTBS impacted on manual dexterity, its effects appear too limited and variable in order to use it as a reliable proof of cortical vicariation mechanism (cortical area replacing another one) underlying functional recovery following a cortical lesion in the motor control domain, in contrast to potent pharmacological block generated by muscimol infusion, whose application is though limited to an animal model such as non-human primate

    Behavioral Assessment of Manual Dexterity in Non-Human Primates

    Get PDF
    The corticospinal (CS) tract is the anatomical support of the exquisite motor ability to skillfully manipulate small objects, a prerogative mainly of primates1. In case of lesion affecting the CS projection system at its origin (lesion of motor cortical areas) or along its trajectory (cervical cord lesion), there is a dramatic loss of manual dexterity (hand paralysis), as seen in some tetraplegic or hemiplegic patients. Although there is some spontaneous functional recovery after such lesion, it remains very limited in the adult. Various therapeutic strategies are presently proposed (e.g. cell therapy, neutralization of inhibitory axonal growth molecules, application of growth factors, etc), which are mostly developed in rodents. However, before clinical application, it is often recommended to test the feasibility, efficacy, and security of the treatment in non-human primates. This is especially true when the goal is to restore manual dexterity after a lesion of the central nervous system, as the organization of the motor system of rodents is different from that of primates1,2. Macaque monkeys are illustrated here as a suitable behavioral model to quantify manual dexterity in primates, to reflect the deficits resulting from lesion of the motor cortex or cervical cord for instance, measure the extent of spontaneous functional recovery and, when a treatment is applied, evaluate how much it can enhance the functional recovery

    Asymmetric and distant effects of a unilateral lesion of the primary motor cortex on the bilateral supplementary motor areas in adult macaque monkeys

    Get PDF
    A restricted lesion of the hand area in the primary motor cortex (M1) leads to a deficit of contralesional manual dexterity, followed by an incomplete functional recovery, accompanied by plastic changes in M1 itself and in other cortical areas on both hemispheres. Using the marker SMI-32 specific to pyramidal neurons in cortical layers III and V, we investigated the impact of a focal unilateral M1 lesion (hand representation) on the rostral part (F6) and caudal part (F3) of the supplementary motor area (SMA) in both hemispheres in nine adult macaque monkeys compared with four intact control monkeys. The M1 lesion induced a consistent interhemispheric asymmetry in density of SMI-32-positive neurons in F3 layer V (statistically significant in 8 of 9 lesioned monkeys), highly correlated with the lesion volume and with the duration of functional recovery, but not with the extent of functional recovery itself. Such interhemispheric asymmetry was neither present in the intact monkeys, as expected, nor in F6 in all monkeys. In addition, the M1 lesion also impacted on the basal dendritic arborization of F3 layer V neurons. Neuronal density was clearly less affected by the M1 lesion in F3 layer III compared with layer V. We interpret the remote effect of M1 lesion onto the density of SMI-32-positive neurons and dendritic arborization in the SMAs bilaterally as the consequence of multiple factors, such as changes of connectivity, diaschisis and various mechanisms involved in cortical plasticity underlying the functional recovery from the M1 lesion. SIGNIFICANCE STATEMENT The motor system of macaque monkeys, in addition to be similarly organized as in humans, is a good candidate to study the impact of a focal lesion of the main contributor to voluntary movements, the primary motor cortex (M1), on non-primary motor cortical areas also involved in manual dexterity, both at behavioral and structural levels. Our results show that a unilateral permanent lesion of M1 hand area in nine monkeys affects the interhemispheric balance of the number of SMI-32-positive pyramidal neurons in the cortical layer V of the supplementary motor area, in a way strongly correlated to the lesion volume and duration of the incomplete functional recovery

    Role of primary motor cortex in the control of manual dexterity assessed via sequential bilateral lesion in the adult macaque monkey: A case study

    Get PDF
    From a case study, we describe the impact of unilateral lesion of the hand area in the primary motor cortex (M1) on manual dexterity and the role of the intact contralesional M1 in long-term functional recovery. An adult macaque monkey performed two manual dexterity tasks: (i) “modified Brinkman board” task, assessed simple precision grip versus complex precision grip, the latter involved a hand postural adjustment; (ii) “modified Klüver board” task, assessed movements ranging from power grip to precision grip, pre-shaping and grasping. Two consecutive unilateral M1 lesions targeted the hand area of each hemisphere, the second lesion was performed after stable, though incomplete, functional recovery from the primary lesion. Following each lesion, the manual dexterity of the contralesional hand was affected in a comparable manner, effects being progressively more deleterious from power grip to simple and then complex precision grips. Both tasks yielded consistent data, namely that the secondary M1 lesion did not have a significant impact on the recovered performance from the primary M1 lesion, which took place 5 months earlier. In conclusion, the intact contralesional M1 did not play a major role in the long-term functional recovery from a primary M1 lesion targeted to the hand area

    Cutaneous inputs to dorsal column nuclei in adult macaque monkeys subjected to unilateral lesion of the primary motor cortex or of the cervical spinal cord and treatments promoting axonal growth

    No full text
    The highly interconnected somatosensory and motor systems are subjected to connectivity changes at close or remote locations following a central nervous system injury. What is the impact of unilateral injury of the primary motor cortex (hand area; MCI) or of the cervical cord (hemisection at C7-C8 level; SCI) on the primary somatosensory (cutaneous) inputs to the dorsal column nuclei (DCN) in adult macaque monkeys? The effects of treatments promoting axonal growth were assessed. In the SCI group (n = 4), 1 monkey received a control antibody and 3 monkeys a combination treatment of anti-Nogo-A antibody and brain-derived neurotrophic factor (BDNF). In the MCI group (n = 4), 2 monkeys were untreated and 2 were treated with the anti-Nogo-A antibody. Using trans-ganglionic transport of cholera toxin B subunit injected in the first 2 fingers and toes on both sides, the areas of axonal terminal fields in the cuneate and gracile nuclei were bilaterally compared. Unilateral SCI at C7-C8 level, encroaching partially on the dorsal funiculus, resulted in an ipsilesional lower extent of the inputs from the toes in the gracile nuclei, not modified by the combined treatment. SCI at C7-C8 level did not affect the bilateral balance of primary inputs to the cuneate nuclei, neither in absence nor in presence of the combined treatment. MCI targeted to the hand area did not impact on the primary inputs to the cuneate nuclei in 2 untreated monkeys. After MCI, the administration of anti-Nogo-A antibody resulted in a slight bilateral asymmetrical extent of cutaneous inputs to the cuneate nuclei, with a larger extent ipsilesionally. Overall, remote effects following MCI or SCI have not been observed at the DCN level, except possibly after MCI and anti-Nogo-A antibody treatment

    Long-term motor cortical map changes following unilateral lesion of the hand representation in the motor cortex in macaque monkeys showing functional recovery of hand functions

    Full text link
    Purpose: How are motor maps modified within and in the immediate vicinity of a damaged zone in the motor cortex of non-human primates? Methods: In eight adult macaque monkeys subjected to a restricted chemical lesion of the hand area in the primary motor cortex (M1), motor maps were established using intracortical micro-stimulation (ICMS) techniques. The monkeys were subdivided into five animals without treatment, whereas three monkeys received an anti-Nogo-A antibody treatment. Results: Following permanent M1 injury, the lesion territory became largely non micro-excitable several months post-lesion, in spite of some recovery of hand function. Few sites within the lesion territory remained excitable, though irrespective to the degree of functional recovery. Around the lesion in M1, there was no reallocation of proximal shoulder/arm territories into distal hand functions. However, ICMS delivered at supra-threshold intensities in these proximal territories elicited digit movements. Post-lesion ICMS thresholds to elicit movements of forelimb muscle territories increased, independently from the degree of functional recovery. Further behavioural evidence for an enhancement of functional recovery promoted by the anti-Nogo-A antibody treatment is provided. Conclusion: The degree of functional recovery is not related to a reorganization of motor maps within, and in the vicinity of, a M1 lesion
    corecore