30 research outputs found
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° CYP2D6*4 Π½Π° ΠΏΡΠΎΡΠΈΠ»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎΠΌ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ
Background: Alcohol dependence is often combined with affective disorders, in particular, depressive disorder, which adversely affects the prognosis of the course of both diseases. For the treatment of a depressive disorder, drugs from the group of tetracyclic antidepressants, of which mirtazapine is a representative, are used. Therapy with mirtazapine is associated with the risk of undesirable drug reactions and pharmacoresistance.
Aim: To study the effect of CYPD6 isoenzyme activity on the efficacy and safety of mirtazapine therapy in patients with depressive disorders comorbid with alcoholism.
Methods: The study was conducted on 109 Russian patients with a depressive disorder, comorbid with alcohol dependence. For the correction of depressive disorders within the framework of cyclothymia, mirtazapine was prescribed to patients at a dosage of 1545 mg/day. CYP2D6*4 genotyping (1846G A, rs3892097) was carried out using Real-time polymerase chain reaction with allele-specific hybridization. Efficacy and safety were assessed using validated psychometric scales and an assessment of the severity of adverse drug reactions.
Results: By the 9th day of the study, the severity of depressive symptoms on the HAMD scale was significantly different in patients with different genotypes: (GG) 7.0 [6.0; 8.0], (GA) 4.0 [3.8; 5.0] (p0.001), safety indicator, estimated on a UKU scale: (GG) 3.0 [3.0; 3.0], (GA) 4.0 [4.0; 5.0] (p0.001). The presence of differences persisted on the 16th day: (GG) 5.0 [3.0; 6.0], (GA) 1.5 [0.8; 3.2] (p0.001), safety indicator, estimated on a UKU scale: (GG) 6.0 [6.0; 7.0], (GA) 8.5 [8.0; 10.0] (p0.001).
Conclusion: In this study, the effect of CYP2D6 gene polymorphism on the efficacy and safety of therapy with mirtazapine was demonstrated. Carrying a minor allele A is associated with an increased risk of adverse drug reactions, but improving performance profile performance.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠ΅ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°, ΡΠ°ΡΡΠΎ ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΠΎ ΡΠΎΡΠ΅ΡΠ°ΡΡΡΡ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ, ΡΡΠΎ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΠΏΡΠΎΠ³Π½ΠΎΠ·Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΠ»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΈΠ· Π³ΡΡΠΏΠΏΡ ΡΠ΅ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π½ΡΠΈΠ΄Π΅ΠΏΡΠ΅ΡΡΠ°Π½ΡΠΎΠ², ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΌ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½. Π’Π΅ΡΠ°ΠΏΠΈΡ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½ΠΎΠΌ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π° Ρ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ.
Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΎΡΠ΅Π½ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠΊΠ΅ΡΠ° CYPD6*4 Π½Π° ΠΏΡΠΎΡΠΈΠ»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½ΠΎΠΌ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎΠΌ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠΎΠΌ.
ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° 109 ΡΡΡΡΠΊΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°Ρ
Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎΠΌ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ. ΠΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ Ρ ΡΠ΅Π»ΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΡ
ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠΈΠΊΠ»ΠΎΡΠΈΠΌΠΈΠΈ Π±ΡΠ» Π½Π°Π·Π½Π°ΡΠ΅Π½ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½ Π² Π΄ΠΎΠ·ΠΈΡΠΎΠ²ΠΊΠ΅ 1545 ΠΌΠ³/ΡΡΡ. ΠΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ CYP2D6*4 (1846GA, rs3892097) ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ Π°Π»Π»Π΅Π»ΡΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΈΡ
ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΊΠ°Π» ΠΈ ΡΠΊΠ°Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π 9-ΠΌΡ Π΄Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΠΌΠΏΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ HAMD ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ ΠΎΡΠ»ΠΈΡΠ°Π»Π°ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π³Π΅Π½ΠΎΡΠΈΠΏΠ°ΠΌΠΈ: (GG) 7,0 [6,0; 8,0], (GA) 4,0 [3,8; 5,0] (p0,001), ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ΅Π½Π΅Π½Π½ΡΠΉ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ UKU: (GG) 3,0 [3,0; 3,0], (GA) 4,0 [4,0; 5,0] (p0,001). ΠΠ°Π»ΠΈΡΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΡΠΎΡ
ΡΠ°Π½ΡΠ»ΠΎΡΡ ΠΈ Π½Π° 16-ΠΉ Π΄Π΅Π½Ρ: (GG) 5,0 [3,0; 6,0], (GA) 1,5 [0,8; 3,2] (p0,001), ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ΅Π½Π΅Π½Π½ΡΠΉ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ UKU: (GG) 6,0 [6,0; 7,0], (GA) 8,5 [8,0; 10,0] (p0,001).
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠΊΠ΅ΡΠ° CYP2D6*4 Π½Π° ΠΏΡΠΎΡΠΈΠ»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΌΠΈΡΡΠ°Π·Π°ΠΏΠΈΠ½ΠΎΠΌ. ΠΠΎΡΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΌΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ Π°Π»Π»Π΅Π»Ρ A ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΎ Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΌ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ, Π½ΠΎ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ CYP2D6 Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌΠΈ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ
Background: Alcohol dependence is often combined with affective disorders, in particular, depressive disorder (DD), which worsens adversely affects the prognosis of the course of both diseases and their outcomes. For the treatment of DD, drugs from the group of selective serotonin reuptake inhibitors, whose representative is fluvoxamine, are used. Fluvoxamine therapy is often associated with a risk of development is shown to be ineffective, and a part of patients develop dose-dependent adverse drug reactions (ADR) and pharmacoresistance.Objective: To study the effects of CYPD6 isoenzyme activity on the efficacy and safety of fluvoxamine therapy in patients with depressive disorders, comorbid with alcoholism.Methods: The study was conducted on 117 Russian patients with DD, alcohol-dependent comorbid. For the purpose of correction of depressive disorders within the framework of cyclothymia, fluvoxamine (Fevarin) was administered to patients at a dosage of 50β150 mg/day. Genotyping was carried out by the method of polymerase chain reaction in Real-time mode with allele-specific hybridization. Efficacy and safety were assessed using validated psychometric scales and an assessment of the severity of ADR. To evaluate the activity of CYP2D6, the method of high performance liquid chromatography with mass spectrometry was used to measure the urinary content of the endogenous substrate of this isoenzyme and its metabolite, the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline.Results: By the 9th day of the study, the severity of depressive symptoms on the HAMD scale was statistically significantly different in patients with different genotypes: (GG) 7.0 [6.0; 8.0], (GA) 4.0 [3.0; 5.0] (p0.001); safety indicator, estimated on a UKU scale: 3.0 [2.0; 4.0], (GA) 4.0 [4.0; 4.2] (p0.001). The presence of differences persisted on the 16th day: (GG) 5.0 [3.0; 6.0], (GA) 1.5 [1.0; 3.0] (p0.001); safety indicator, estimated on a UKU scale: (GG) 9.0 [9.0; 10.0], (GA) 6.0 [6.0; 7.0] (p0.001). The calculation of the correlation coefficients between the difference in the number of scores on psychometric scales and the metabolic ratio showed a statistically significant inverse correlation of the average power degree between the efficiency index estimated by the HAMD scale (r=-0.467, p0.05). There was no connection with the difference on the UKU scale (r=0.173, p0.05).Conclusion: In a study of a group of 117 patients with DD, comorbid with alcohol dependence, the effect of CYP2D6 activity, estimated by the ratio of the endogenous substrate concentrations of pinolin and its metabolite 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline, on the efficacy of fluvoxamine therapy. This effect was also shown using the results of genotyping. The results of genotyping also showed the existence of a difference in the safety index in patients with different genotypes from the polymorphic marker CYP2D6 1846GA.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΠ»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ°ΡΡΠΎ ΡΠΎΡΠ΅ΡΠ°Π΅ΡΡΡ Ρ Π°ΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΠΏΡΠΎΠ³Π½ΠΎΠ·Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΠ»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΈΠ· Π³ΡΡΠΏΠΏΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π·Π°Ρ
Π²Π°ΡΠ° ΡΠ΅ΡΠΎΡΠΎΠ½ΠΈΠ½Π°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΌ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½. Π’Π΅ΡΠ°ΠΏΠΈΡ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½ΠΎΠΌ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π° Ρ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ. Π Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° CYP2D6, ΠΊΠΎΠ΄ΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΎΠ΄Π½ΠΎΠΈΠΌΠ΅Π½Π½ΡΠΉ ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠ΅Π½Ρ, Π½Π° ΡΠ°ΡΡΠΎΡΡ ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½Π°.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΈΠ·ΡΡΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ° CYPD6 Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½ΠΎΠΌ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌΠΈ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠΎΠΌ.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° 117 ΡΡΡΡΠΊΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°Ρ
Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, ΠΊΠΎΠΌΠΎΡΠ±ΠΈΠ΄Π½ΡΠΌΠΈ Ρ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ. ΠΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ Ρ ΡΠ΅Π»ΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΡ
ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠΈΠΊΠ»ΠΎΡΠΈΠΌΠΈΠΈ Π±ΡΠ» Π½Π°Π·Π½Π°ΡΠ΅Π½ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½ Π² Π΄ΠΎΠ·ΠΈΡΠΎΠ²ΠΊΠ΅ 50β150 ΠΌΠ³/ΡΡΡ. ΠΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ CYP2D6*4 (1846GA, rs3892097) ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ Π°Π»Π»Π΅Π»ΡΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΈΡ
ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΊΠ°Π» ΠΈ ΡΠΊΠ°Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ CYP2D6 ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ Ρ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ ΠΏΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΠΌΠΎΡΠ΅ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ±ΡΡΡΠ°ΡΠ° Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΠΈ Π΅Π³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ 6-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-1,2,3,4-ΡΠ΅ΡΡΠ°Π³ΠΈΠ΄ΡΠΎ-Π±Π΅ΡΠ°-ΠΊΠ°ΡΠ±ΠΎΠ»ΠΈΠ½Π°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π 9-ΠΌΡ Π΄Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΠΌΠΏΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ HAMD ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ ΠΎΡΠ»ΠΈΡΠ°Π»Π°ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π³Π΅Π½ΠΎΡΠΈΠΏΠ°ΠΌΠΈ: (GG) 7,0 [6,0; 8,0], (GA) 4,0 [3,0; 5,0] (p0,001); ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ΅Π½Π΅Π½Π½ΡΠΉ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ UKU: 3,0 [2,0; 4,0], (GA) 4,0 [4,0; 4,2] (p0,001). ΠΠ°Π»ΠΈΡΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΡΠΎΡ
ΡΠ°Π½ΡΠ»ΠΎΡΡ ΠΈ Π½Π° 16-ΠΉ Π΄Π΅Π½Ρ: (GG) 5,0 [3,0; 6,0], (GA) 1,5 [1,0; 3,0] (p0,001); ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ΅Π½Π΅Π½Π½ΡΠΉ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ UKU: (GG) 9,0 [9,0; 10,0], (GA) 6,0 [6,0; 7,0] (p0,001). Π Π°ΡΡΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·Π½ΠΈΡΠ΅ΠΉ Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ ΠΏΡΠΈΡ
ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΊΠ°Π»Π°ΠΌ ΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠΉ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΈΠ»Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, ΠΎΡΠ΅Π½Π΅Π½Π½ΠΎΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ°Π»Ρ HAMD (r=-0,467, p0,05). Π‘Π²ΡΠ·Ρ Ρ ΡΠ°Π·Π½ΠΈΡΠ΅ΠΉ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ UKU ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°Π»Π° (r=0,173, p0,05).ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ CYP2D6, ΠΎΡΠ΅Π½Π΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ±ΡΡΡΠ°ΡΠ° ΠΏΠΈΠ½ΠΎΠ»ΠΈΠ½Π° ΠΈ Π΅Π³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° 6-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-1,2,3,4-ΡΠ΅ΡΡΠ°Π³ΠΈΠ΄ΡΠΎ-Π±Π΅ΡΠ°-ΠΊΠ°ΡΠ±ΠΎΠ»ΠΈΠ½Π°, Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½ΠΎΠΌ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ CYP2D6 ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΠ»ΡΠ²ΠΎΠΊΡΠ°ΠΌΠΈΠ½ΠΎΠΌ. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ CYP2D6 Π½Π° Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΎ Π½Π΅ Π±ΡΠ»ΠΎ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° CYP2D6 Π½Π° ΠΏΡΠΎΡΠΈΠ»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ
Multiwavelength variability of BL Lacertae measured with high time resolution
In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000β10000 Γ
with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at Ξ³-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ~0.5 hr. The most common timescale is 13 Β± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the Ξ³-ray and optical light curves by up to ~0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ~3 G.Accepted manuscrip
The complex variability of blazars: time-scales and periodicity analysis in S4Β 0954+65
Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4Β 0954+65 with data acquired in 2019β2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37Β GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time.Accepted manuscrip
Multiwavelength behaviour of the blazar 3CΒ 279: decade-long study from Ξ³-ray to radio
We report the results of decade-long (2008β2018) Ξ³-ray to 1Β GHz radio monitoring of the blazar 3CΒ 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and Ξ³-ray light curves correlate well, with no delay β³ 3 h, implying general cospatiality of the emission regions. The Ξ³-rayβoptical fluxβflux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43Β GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain Ξ³-ray variability on very short time-scales. The Mgβii emission line flux in the βblueβ and βredβ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the ΟΒ = 1 surface of synchrotron self-absorption. The global maximum in the 86Β GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at βΌ5Β GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.First author draf
Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign
High Energy AstrophysicsInstrumentatio
Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign
In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the
center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations
for a weakly accreting supermassive black hole of mass βΌ6.5 Γ 109Me. The EHTC also partnered with several
international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength
campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a
legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at
high energies, making it possible to combine core flux constraints with the more spatially precise very long
baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active
nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one
broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the
basic source properties, but conclude that a structured jet is necessary to explain M87βs spectrum. We can exclude
that the simultaneous Ξ³-ray emission is produced via inverse Compton emission in the same region producing the
EHT mm-band emission, and further conclude that the Ξ³-rays can only be produced in the inner jets (inward of
HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and
secondaries cannot yet be excluded.http://iopscience.iop.org/2041-8205am2022Physic