489 research outputs found

    Measurement and Analysis of Axial End Forces in a Full-Length Prototype of LHC Main Dipole Magnets

    Get PDF
    A full-length, twin aperture prototype (MBP2N1) dipole magnet for the LHC project was assembled at CERN with collared coils delivered by industry. The design of this prototype is close to that foreseen for the dipole series manufacture as far the coil geometry and that of the yoke components are concerned. The bolts that transfer the axial magnetic forces from the coil ends to the cold mass end plates were instrumented to verify the axial coil support. These axial forces were initially measured after partial assembly, during a standard and an accelerated cool down Introduction to 1.9 K, and during magnet excitation up to 9.2 T. High force levels were observed, triggering a comparison with analytical models and measurements routinely made on 1-m single aperture dipole models. The prototype magnet was re-assembled with lower initial axial force settings and with additional instrumentation, to monitor these forces during the entire assembly process, and re-tested, to possibly correlate axial forces with training behaviour. This paper reports about the experimental observations and provides models towards their understandin

    Regional versus global finite-state error repair

    Get PDF
    [Abstract] We focus on the domain of a regional least-cost strategy in order to illustrate the viability of non-global repair models over finitestate architectures. Our interest is justified by the difficulty, shared by all repair proposals, to determine how far to validate. A short validation may fail to gather sufficient information, and in a long one most of the effort can be wasted. The goal is to prove that our approach can provide, in practice, a performance and quality comparable to that attained by global criteria, with a significant saving in time and space. To the best of our knowledge, this is the first discussion of its kind.Ministerio de EducaciĂłn y Ciencia; TIN2004-07246-C03-02Ministerio de EducaciĂłn y Ciencia; HP2002-0081Xunta de Galcia; PGIDIT03SIN30501PRXunta de Galcia; PGIDIT02SIN01

    Disubstituted Aminoanthraquinone-Based Multicolor Photoinitiators: Photoinitiation Mechanism and Ability of Cationic Polymerization under Blue, Green, Yellow, and Red LEDs

    Get PDF
    The investigation and clarification of the photoinitiation mechanism of novel systems are of importance for the design and development of compounds with high photoinitiation efficiency of photopolymerization. Some disubstituted aminoanthraquinone derivatives have been reported to exhibit interesting photochemical/photophysical properties and have the potential to act as high performance multicolor photoinitiators under the irradiation of various wavelengths of visible light from light-emitting diodes (LEDs). Herein, three disubstituted aminoanthraquinone derivatives, i.e., 1-amino-4-hydroxyanthraquinone, 1,4-diaminoanthraquinone, and 1,5-diaminoanthraquinone, with iodonium salt and N-vinylcarbazole as additives, have been investigated. Their photoinitiation mechanism was studied using fluorescence spectroscopy, laser flash photolysis, steady state photolysis, computational quantum chemistry, and electron spin resonance spin trapping techniques. Then, their photoinitiation ability for the cationic photopolymerization of epoxide and divinyl ether monomers under the irradiation of diverse LEDs (i.e., blue, green, yellow, and red LEDs) was investigated. The types and positions of substituents were found to play a vital role in the photoreactivity and photoinitiation ability of the disubstituted aminoanthraquinone derivative-based photoinitiating systems.P.X. acknowledges funding from the Australian Research Council Future Fellowship (FT170100301). M.L.C. gratefully acknowledges a Georgina Sweet ARC Laureate Fellowship (FL170100041) and generous allocations of supercomputing time on the National Facility of the Australian National Computational Infrastructur

    HOLISMOKES -- II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks

    Full text link
    We present a systematic search for wide-separation (Einstein radius >1.5"), galaxy-scale strong lenses in the 30 000 sq.deg of the Pan-STARRS 3pi survey on the Northern sky. With long time delays of a few days to weeks, such systems are particularly well suited for catching strongly lensed supernovae with spatially-resolved multiple images and open new perspectives on early-phase supernova spectroscopy and cosmography. We produce a set of realistic simulations by painting lensed COSMOS sources on Pan-STARRS image cutouts of lens luminous red galaxies with known redshift and velocity dispersion from SDSS. First of all, we compute the photometry of mock lenses in gri bands and apply a simple catalog-level neural network to identify a sample of 1050207 galaxies with similar colors and magnitudes as the mocks. Secondly, we train a convolutional neural network (CNN) on Pan-STARRS gri image cutouts to classify this sample and obtain sets of 105760 and 12382 lens candidates with scores pCNN>0.5 and >0.9, respectively. Extensive tests show that CNN performances rely heavily on the design of lens simulations and choice of negative examples for training, but little on the network architecture. Finally, we visually inspect all galaxies with pCNN>0.9 to assemble a final set of 330 high-quality newly-discovered lens candidates while recovering 23 published systems. For a subset, SDSS spectroscopy on the lens central regions proves our method correctly identifies lens LRGs at z~0.1-0.7. Five spectra also show robust signatures of high-redshift background sources and Pan-STARRS imaging confirms one of them as a quadruply-imaged red source at z_s = 1.185 strongly lensed by a foreground LRG at z_d = 0.3155. In the future, we expect that the efficient and automated two-step classification method presented in this paper will be applicable to the deeper gri stacks from the LSST with minor adjustments.Comment: 18 pages and 11 figures (plus appendix), submitted to A&

    HFST—Framework for Compiling and Applying Morphologies

    Get PDF
    HFST–Helsinki Finite-State Technology ( hfst.sf.net ) is a framework for compiling and applying linguistic descriptions with finite-state methods. HFST currently connects some of the most important finite-state tools for creating morphologies and spellers into one open-source platform and supports extending and improving the descriptions with weights to accommodate the modeling of statistical information. HFST offers a path from language descriptions to efficient language applications in key environments and operating systems. HFST also provides an opportunity to exchange transducers between different software providers in order to get the best out of each finite-state library.Peer reviewe

    Fifty years of spellchecking

    Get PDF
    A short history of spellchecking from the late 1950s to the present day, describing its development through dictionary lookup, affix stripping, correction, confusion sets, and edit distance to the use of gigantic databases

    Design, Manufacturing Status, First Results of the LHC Main Dipole Final Prototypes and Steps towards Series Manufacture

    Get PDF
    This paper reports about the program of six LHC superconducting main dipole final prototypes and the steps towards series manufacture. The above program, launched in summer 1998, relies on collared coils manufactured by industry and cold masses assembled at the CERN Magnet Assembly Facility. Following design, stability and robustness studies, the magnet design for series manufacture features a "6-block" coil and austenitic steel collars. A general description of the magnet with its main components is given and the main working parameters and the most important manufacturing features are presented. Results of mechanical and magnetic measurements are given as well as the performances of the first prototype. A comparison with results from the previous generation of dipole magnet models and prototypes is also made. Finally an outlook towards series manufacture is given

    Manufacture and Performance of the LHC Main Dipole Final Prototypes

    Get PDF
    This paper reports about the program of six LHC main dipole final prototypes. This program, launched in summer 1998, relies on industrially manufactured collared coils and cold masses assembled at the CERN Magnet Assembly Facility. The magnet design for series manufacture features a "6-block" coil and austenitic steel collars, following design, stability and robustness studies. Results of mechanical and magnetic measurements are given and discussed, as well as the performances of the prototypes measured so far

    Performance of the LHC Final Prototype and First Pre-series Superconducting Dipole Magnets

    Get PDF
    Within the LHC cryo-dipole program, six full-scale superconducting prototypes of final design were built in collaboration between Industry and CERN, followed by launching the manufacture of pre-series magnets. Five prototypes and the first of the pre-series magnets were tested at CERN. This paper reviews the main features and the performance of the cryo-dipoles tested at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field characteristics are presented and discussed in terms of the design parameters
    • …
    corecore