13,340 research outputs found

    Hyperon masses in nuclear matter

    Get PDF
    We analyze hyperon and nucleon mass shifts in nuclear matter using chiral perturbation theory. Expressions for the mass shifts that include strong interaction effects at leading order in the density are derived. Corrections to our results are suppressed by powers of the Fermi momentum divided by either the chiral symmetry breaking scale or the nucleon mass. Our work is relevant for neutron stars and for large hypernuclei

    A New Expansion for Nucleon-Nucleon Interactions

    Get PDF
    We introduce a new and well defined power counting for the effective field theory describing nucleon-nucleon interactions. Because of the large NN scattering lengths it differs from other applications of chiral perturbation theory and is facilitated by introducing an unusual subtraction scheme and renormalization group analysis. Calculation to subleading order in the expansion can be done analytically, and we present the results for both the 1S0 and 3S1-3D1 channels.Comment: 10 pages, 3 figures, latex. Corrected typo, small change to tex

    Roller bearing geometry design

    Get PDF
    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given

    Ultraviolet absorption by interstellar gas at large distances from the galactic plane

    Get PDF
    Eighteen high dispersion International Ultraviolet Exploration spectra of 6 stars in the large magellanic cloud (LMC) 3 stars in the small magellanic cloud (SMC) and 2 foreground stars were studied. Fourteen spectra cover the wavelengths lambda 1150-2000 A and 4 cover lambda 1900-3200 A. All the Magellanic Cloud star spectra exhibit exceedingly strong interstellar absorption lines due to a wide range of ionization stages at galactic velocities and at velocities associated with the LMC or SMC. The analysis is restricted to the Milky Way absorption features. Toward the LMC stars, the strong interstellar lines have a positive velocity extension, which exceeds the extension recorded toward the SMC stars. The most straightforward interpretation of these velocity extensions is obtained by assuming that gas at large distances away from the plane of the galaxy participates in the rotation of the galaxy as found in the galactic disk

    Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks

    Full text link
    Scientists have long sought to understand how vascular networks supply blood and oxygen to cells throughout the body. Recent work focuses on principles that constrain how vessel size changes through branching generations from the aorta to capillaries and uses scaling exponents to quantify these changes. Prominent scaling theories predict that combinations of these exponents explain how metabolic, growth, and other biological rates vary with body size. Nevertheless, direct measurements of individual vessel segments have been limited because existing techniques for measuring vasculature are invasive, time consuming, and technically difficult. We developed software that extracts the length, radius, and connectivity of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using data from 20 human subjects, we calculated scaling exponents by four methods--two derived from local properties of branching junctions and two from whole-network properties. Although these methods are often used interchangeably in the literature, we do not find general agreement between these methods, particularly for vessel lengths. Measurements for length of vessels also diverge from theoretical values, but those for radius show stronger agreement. Our results demonstrate that vascular network models cannot ignore certain complexities of real vascular systems and indicate the need to discover new principles regarding vessel lengths
    corecore