2,919 research outputs found

    ISO observations of the planetary nebula Lindsay 305 in the Small Magellanic Cloud

    Full text link
    We present ISO (Infrared Space Observatory) observations of the planetary nebula Lindsay 305 (L 305) in the Small Magellanic Cloud. L 305 is very prominent in the ISOCAM frames at 6.75 and 11.5 μ\mum, although it is under the detection limit at 4.5 μ\mum. The obtained spectral energy distribution shows a strong mid-IR excess, which, depending on the amount of energy radiated at wavelengths longer than 11.5 μ\mum, may be as large as ∼1500L⊙\sim 1500 L_{\odot}. However, since an accurate estimate of the total nebular luminosity is not available up to date, the evolutionary status of L 305 can not yet be constrained precisely.Comment: 4 pages, 2 figures, to appear in the Publications of the Astronomical Society of Japa

    On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation

    Full text link
    Ultrafine-grained Al alloys produced by high pressure torsion are found to exhibit a very high strength, considerably exceeding the Hall-Petch predictions for the ultrafine grains. The phenomena can be attributed to the unique combination of ultrafine structure and deformation-induced segregations of solute elements along grain boundaries, which may affect the emission and mobility of intragranular dislocations

    Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation

    Full text link
    The decomposition process mechanisms have been investigated in a Fe50Au25Pd25 (at.%) alloy processed by severe plastic deformation. Phases were characterized by X-ray diffraction and microstructures were observed using transmission electron microscopy. In the coarse grain alloy homogenized and aged at 450circC450 ^{circ}\mathrm{C}, the bcc \alpha-Fe and fcc AuPd phases nucleate in the fcc supersaturated solid solution and grow by a discontinuous precipitation process resulting in a typical lamellar structure. The grain size of the homogenized FeAuPd alloy was reduced in a range of 50 to 100nm by high pressure torsion. Aging at 450circC450 ^{circ}\mathrm{C} this nanostructure leads to the decomposition of the solid solution into an equi-axed microstructure. The grain growth is very limited during aging and the grain size remains under 100nm. The combination of two phases with different crystallographic structures (bcc \alpha-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a significant hardening of the allo

    Extended mid-infrared emission from VV 114: probing the birth of a ULIRG

    Full text link
    We present our 5-16 micron spectro-imaging observations of VV114, an infrared luminous early-stage merger, taken with the ISOCAM camera on-board ISO. We find that only 40% of the mid-infrared (MIR) flux is associated with a compact nuclear region, while the rest of the emission originates from a rather diffuse component extended over several kpc. This is in stark contrast with the very compact MIR starbursts usually seen in luminous infrared galaxies. A secondary peak of MIR emission is associated with an extra-nuclear star forming region which displays the largest Halpha equivalent width in the whole system. Comparing our data with the distribution of the molecular gas and cold dust, as well as with radio observations, it becomes evident that the conversion of molecular gas into stars can be triggered over large areas at the very first stages of an interaction. The presence of a very strong continuum at 5 microns in one of the sources indicates that an enshrouded active galactic nucleus may contribute to 40% of its MIR flux. We finally note that the relative variations in the UV to radio spectral properties between the merging galaxies provide evidence that the extinction-corrected star formation rate of similar objects at high z, such as those detected in optical deep surveys, can not be accurately derived from their rest-frame UV properties.Comment: 14 pages, 5 figures, accepted for publication in A&

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia
    • …
    corecore