63 research outputs found

    Redescription of Lemuricola (Madoxyuris) bauchoti (Nematoda, Oxyuridae) from Lemur catta in Madagascar

    Get PDF
    Lemuricola (Madoxyuris) bauchoti Chabaud, Brygoo et Petter, 1965 is redescribed from material collected from the ring-tailed lemur, Lemur catta, from the Beza Mahafaly Special Reserve in Madagascar using the scanning electron microscope. This is a new host record and the first oxyurid reported from the ring-tailed lemur. Previously, records of each species of the subgenus Madoxyuris have been restricted to a single host species, but the close relationship between these nematodes and their Strepsirrhini hosts will only be proven when additional records fill in the gaps in their distribution.Centro de Estudios Parasitológicos y de Vectore

    Redescription of Lemuricola (Madoxyuris) bauchoti (Nematoda, Oxyuridae) from Lemur catta in Madagascar

    Get PDF
    Lemuricola (Madoxyuris) bauchoti Chabaud, Brygoo et Petter, 1965 is redescribed from material collected from the ring-tailed lemur, Lemur catta, from the Beza Mahafaly Special Reserve in Madagascar using the scanning electron microscope. This is a new host record and the first oxyurid reported from the ring-tailed lemur. Previously, records of each species of the subgenus Madoxyuris have been restricted to a single host species, but the close relationship between these nematodes and their Strepsirrhini hosts will only be proven when additional records fill in the gaps in their distribution.Centro de Estudios Parasitológicos y de Vectore

    Use of Mangroves by Lemurs

    Get PDF
    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar’s lemurs are a top global conservation priority with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search, and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in five families using mangroves, representing more than 20 % of lemur species and over 50 % of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping and travelling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognised, and merit greater attention from primate researchers and conservationists in Madagascar

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (bodymass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Ring-tailed lemurs: A species re-imagined

    No full text
    For over 50 years, ring-tailed lemurs have been studied continuously in the wild. As one of the most long-studied primate species, the length and breadth of their study is comparable to research on Japanese macaques, baboons and chimpanzees. They are also one of the most broadly observed of all primates, with comprehensive research conducted on their behaviour, biology, ecology, genetics, palaeobiology and life history. However, over the last decade, a new generation of lemur scholars, working in conjunction with researchers who have spent decades studying this species, have greatly enhanced our knowledge of ring-tailed lemurs. In addition, research on this species has expanded beyond traditional gallery forest habitats to now include high altitude, spiny thicket, rocky outcrop and anthropogenically disturbed coastal forest populations. The focus of this special volume is to 're-imagine' the 'flagship species of Madagascar', bringing together three generations of lemur scholars.publishe

    Limestone cliff - face and cave use by wild ring-tailed lemurs (Lemur catta) in southwestern Madagascar

    No full text
    Ring - tailed lemurs live in a range of habitats in southwestern Madagascar. To date, much of the knowledge of ring - tailed lemur ecology, biology and behavior come from riverine gallery forests sites. Recent years have seen an expansion of comprehensive research on this resilient species, including areas of limestone spiny forest along Madagascar’s southwestern coast. This work is documenting newly discovered behaviors by this species. The regular use of cliff - faces and embedded crevices and caves by ring - tailed lemurs in southwestern Madagascar are reported here. Cave use by several anthropoid primates has been explained as a thermoregulatory behavior. It is suggested that cliff - face and cave use by these ring-tailed lemurs serves several purposes, including resource acquisition, thermoregulation, and as an anti - predator avoidance strategy in the absence of suitable large sleeping trees. Observations indicate that the limestone boundaries of the Mahafaly Plateau and their associated xerophytic scrub forests warrant further conservation attention, given the presence of behavioral variation and increasing threats to this endangered primate species
    • …
    corecore