112 research outputs found

    High Temperature Solid Oxide Electrolysis – Technology and Modeling

    Get PDF
    In the global quest to renounce from fossil fuels, a large demand for the renewable production of hydrogen via water electrolysis exists. In this context, the solid oxide electrolyzer (SOE) is an interesting technology due to its high efficiency resulting from elevated operating temperatures of up to 900 °C. Physical modeling plays a vital role in the development of SOEs, as it lowers experimental costs and provides insight where measurements reach limits. A main challenge for modeling SOEs is the multitude of physical effects, occurring and interacting on various spatial and temporal scales. This requires assumptions and simplifications, particularly when increasing scope and dimensions of a model. In this review, we discuss the different approaches currently available in literature

    Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation

    Get PDF
    Glutaminyl-tRNA synthetase from Deinococcus radiodurans possesses a C-terminal extension of 215 residues appending the anticodon-binding domain. This domain constitutes a paralog of the Yqey protein present in various organisms and part of it is present in the C-terminal end of the GatB subunit of GatCAB, a partner of the indirect pathway of Gln-tRNA(Gln) formation. To analyze the peculiarities of the structure–function relationship of this GlnRS related to the Yqey domain, a structure of the protein was solved from crystals diffracting at 2.3 Å and a docking model of the synthetase complexed to tRNA(Gln) constructed. The comparison of the modeled complex with the structure of the E. coli complex reveals that all residues of E. coli GlnRS contacting tRNA(Gln) are conserved in D. radiodurans GlnRS, leaving the functional role of the Yqey domain puzzling. Kinetic investigations and tRNA-binding experiments of full length and Yqey-truncated GlnRSs reveal that the Yqey domain is involved in tRNA(Gln) recognition. They demonstrate that Yqey plays the role of an affinity-enhancer of GlnRS for tRNA(Gln) acting only in cis. However, the presence of Yqey in free state in organisms lacking GlnRS, suggests that this domain may exert additional cellular functions

    Crystallization and crystallographic analysis of an Arabidopsis nuclear proteinaceous RNase P

    Get PDF
    RNase P activity is ubiquitous and involves the 5' maturation of precursor tRNAs. For a long time, it was thought that all RNases P were ribonucleoproteic enzymes. However, the characterization of RNase P in human mitochondria and in plants revealed a novel kind of RNase P composed of protein only, called PRORP for `proteinaceous RNase P'. Whereas in human mitochondria PRORP has two partners that are required for RNase P activity, PRORP proteins are active as single-subunit enzymes in plants. Three paralogues of PRORP are found in Arabidopsis thaliana. PRORP1 is responsible for RNase P in mitochondria and chloroplasts, while PRORP2 and PRORP3 are nuclear enzymes. Here, the purification and crystallization of the Arabidopsis PRORP2 protein are reported. Optimization of the initial crystallization conditions led to crystals that diffracted to 3 Å resolution

    Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA.

    Get PDF
    The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²⁺. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference

    A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography

    Get PDF
    Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine ‘nonmodel’ and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip conceptThe following funding is acknowledged: Agence Nationale de la Recherche (contract No. ANR-11-LABX- 0057_MITOCROSS to Claude Sauter, Bernard Lorber; contract No. ANR-10-LABX-0036_NETRN to Claude Sauter, Bernard Lorber; contract No. ANR-13-BS07-0007-01 to Eric Girard, Sylvain Engilberge); Ministère des Affaires Etrangères (contract No. PROCOPE Hubert Curien to Claude Sauter, Mario Mörl); Deutsche Forschungsgemeinschaft (contract No. Mo 634/10-1 to Mario Mörl, Heike Betat); Université de Strasbourg [grant No. Initiative d’excellence (IDEX) to Claude Sauter, Raphaël de Wijn]; Centre National de la Recherche Scientifique (grant No. MRCT- 2012_PTI_UPR9002 to Claude Sauter)

    Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system.

    Get PDF
    In mammalian mitochondria the translational machinery is of dual origin with tRNAs encoded by a simplified and rapidly evolving mitochondrial (mt) genome and aminoacyl-tRNA synthetases (aaRS) coded by the nuclear genome, and imported. Mt-tRNAs are atypical with biased sequences, size variations in loops and stems, and absence of residues forming classical tertiary interactions, whereas synthetases appear typical. This raises questions about identity elements in mt-tRNAs and adaptation of their cognate mt-aaRSs. We have explored here the human mt-aspartate system in which a prokaryotic-type AspRS, highly similar to the Escherichia coli enzyme, recognizes a bizarre tRNA(Asp). Analysis of human mt-tRNA(Asp) transcripts confirms the identity role of the GUC anticodon as in other aspartylation systems but reveals the non-involvement of position 73. This position is otherwise known as the site of a universally conserved major aspartate identity element, G73, also known as a primordial identity signal. In mt-tRNA(Asp), position 73 can be occupied by any of the four nucleotides without affecting aspartylation. Sequence alignments of various AspRSs allowed placing Gly-269 at a position occupied by Asp-220, the residue contacting G73 in the crystallographic structure of E. coli AspRS-tRNA(Asp) complex. Replacing this glycine by an aspartate renders human mt-AspRS more discriminative to G73. Restriction in the aspartylation identity set, driven by a rapid mutagenic rate of the mt-genome, suggests a reverse evolution of the mt-tRNA(Asp) identity elements in regard to its bacterial ancestor.journal articleresearch support, non-u.s. gov't2006 Jun 092006 04 05importe

    Nucleic Acids Res

    Get PDF
    In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions

    Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase.

    Get PDF
    Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 A resolution. Complete data sets could be collected and led to structure solution by molecular replacement.journal articleresearch support, non-u.s. gov't2007 Apr 012007 03 30importe

    PPR proteins shed a new light on RNase P biology.

    Get PDF
    A fast growing number of studies identify pentatricopeptide repeat (PPR) proteins as major players in gene expression processes. Among them, a subset of PPR proteins called PRORP possesses RNase P activity in several eukaryotes, both in nuclei and organelles. RNase P is the endonucleolytic activity that removes 5' leader sequences from tRNA precursors and is thus essential for translation. Before the characterization of PRORP, RNase P enzymes were thought to occur universally as ribonucleoproteins, although some evidence implied that some eukaryotes or cellular compartments did not use RNA for RNase P activity. The characterization of PRORP reveals a two-domain enzyme, with an N-terminal domain containing multiple PPR motifs and assumed to achieve target specificity and a C-terminal domain holding catalytic activity. The nature of PRORP interactions with tRNAs suggests that ribonucleoprotein and protein-only RNase P enzymes share a similar substrate binding process

    Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA.

    Get PDF
    The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg2+. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference
    corecore