28 research outputs found

    Duodenal Adenomas and Cancer in MUTYH-associated Polyposis: An International Cohort Study

    Get PDF
    Although duodenal adenomas and cancer appear to occur significantly less frequently in autosomal recessive MUTYH-associated polyposis (MAP) than in autosomal dominant familial adenomatous polyposis (FAP),1 current guidelines recommend similar endoscopic surveillance for both disorders.2-4 This involves gastro-duodenoscopy starting at 25 to 35 years of age and repeated at intervals determined by Spigelman staging based on the number, size, histological type and degree of dysplasia of adenomas, and by ampullary staging. Case reports of duodenal cancers in MAP suggest that they may develop in the absence of advanced Spigelman stage benign disease and even without coexisting adenomas.1 Recent molecular analyses suggest thatMAPduodenal adenomashave a higher mutational burden than FAP adenomas and are more likely to harbor oncogenic drivermutations, such as those in KRAS.5 These apparent differences in the biology and natural history of duodenal polyposis in FAP and MAP challenge the assumption that the same surveillance should be applied in both conditions

    Duodenal carcinoma at the ligament of Treitz. A molecular and clinical perspective

    Get PDF
    Background There is very small occurrence of adenocarcinoma in the small bowel. We present a case of primary duodenal adenocarcinoma and discuss the findings of the case diagnostic modalities, current knowledge on the molecular biology behind small bowel neoplasms and treatment options. Case The patient had a history of iron deficiency anemia and occult bleeding with extensive workup consisting of upper endoscopy, colonoscopy, capsule endoscopy, upper gastrointestinal series with small bowel follow through and push enteroscopy. Due to persistent abdominal pain and iron deficiency anemia the patient underwent push enteroscopy which revealed adenocarcinoma of the duodenum. The patient underwent en-bloc duodenectomy which revealed T3N1M0 adenocarcinoma of the 4th portion of the duodenum. Conclusions Primary duodenal carcinoma, although rare should be considered in the differential diagnosis of occult gastrointestinal bleeding when evaluation of the lower and upper GI tract is unremarkable. We discuss the current evaluation and management of this small bowel neoplasm

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cellular and molecular insights into Hox protein action.

    No full text
    Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action

    Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes

    No full text
    Alteration of nucleosomes by ATP-dependent remodeling complexes represents a critical step in the regulation of transcription. The human SWI/SNF (hSWI/SNF) family is composed of complexes that contain either Brg1 or hBrm as the central ATPase; however, these separate complexes have not been compared functionally. Here we describe the establishment of cell lines that express epitope-tagged Brg1 and hBrm and a characterization of the complexes associated with these two ATPases. We show that Brg1 fractionates into two complexes that differ in activity and subunit composition, whereas hBrm is found in one complex with lower activity than the Brg1 complexes. These three complexes can remodel nucleosomal arrays, increase restriction enzyme accessibility, and hydrolyze ATP in a DNA-dependent manner. The three complexes differ markedly in their ability to remodel mononucleosomal core particles. We also show that the hBrm complex and one of the Brg1 complexes contain components of the mammalian Sin3 (mSin3) complex. In addition, we have found that Brg1, hBrm, and BAF155 can interact specifically with mSin3A in vitro, showing a direct association of hSWI/SNF complexes with proteins involved in gene repression. These unexpected functional characteristics indicate that these hSWI/SNF complexes play diverse regulatory roles

    Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon

    No full text
    The phosphoserine/threonine binding protein 14-3-3 stimulates the catalytic activity of protein kinase C- (PKC) by engaging two tandem phosphoserine-containing motifs located between the PKC regulatory and catalytic domains (V3 region). Interaction between 14-3-3 and this region of PKC is essential for the completion of cytokinesis. Here, we report the crystal structure of 14-3-3 bound to a synthetic diphosphorylated PKC V3 region revealing how a consensus 14-3-3 site and a divergent 14-3-3 site cooperate to bind to 14-3-3 and so activate PKC. Thermodynamic data show a markedly enhanced binding affinity for two-site phosphopeptides over single-site 14-3-3 binding motifs and identifies Ser 368 as a gatekeeper phosphorylation site in this physiologically relevant 14-3-3 ligand. This dual-site intra-chain recognition has implications for other 14-3-3 targets, which seem to have only a single 14-3-3 motif, as other lower affinity and cryptic 14-3-3 gatekeeper sites might exist

    Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6

    No full text
    International audienceDifferent subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of predetermined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7
    corecore