5 research outputs found

    An online database to collate, analyze, and synthesize data on the biodiversity and ecology of intermittent rivers worldwide

    Get PDF
    Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow-regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case-by-case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data collected during nonflowing and dry hydrological phases. We encourage contributions and provide guidance on how to contribute and access data. Ultimately, the IRBAS database serves as a portal, storage, standardization, and discovery tool, enabling collation, synthesis, and analysis of data to elucidate patterns in river biodiversity and guide management. Contribution creates high visibility for datasets, facilitating collaboration. The IRBAS database will grow in content as the study of intermittent rivers continues and data retrieval will allow for networking, meta-analyses, and testing of generalizations across multiple systems, regions, and taxa

    Climate shapes community flowering periods across biomes

    Get PDF
    Aim: Climate shapes the composition and function of plant communities globally, but it remains unclear how this influence extends to floral traits. Flowering phenology, or the time period in which a species flowers, has well-studied relationships with climatic signals at the species level but has rarely been explored at a cross-community and continental scale. Here, we characterise the distribution of flowering periods (months of flowering) across continental plant communities encompassing six biomes, and determine the influence of climate on community flowering period lengths. Location: Australia. Taxon: Flowering plants. Methods: We combined plant composition and abundance data from 629 standardised floristic surveys (AusPlots) with data on flowering period from the AusTraits database and additional primary literature for 2983 species. We assessed abundance-weighted community mean flowering periods across biomes and tested their relationship with climatic annual means and the predictability of climate conditions using regression models. Results: Combined, temperature and precipitation (annual mean and predictability) explain 29% of variation in continental community flowering period. Plant communities with higher mean temperatures and lower mean precipitation have longer mean flowering periods. Moreover, plant communities in climates with predictable temperatures and, to a lesser extent, predictable precipitation have shorter mean flowering periods. Flowering period varies by biome, being longest in deserts and shortest in alpine and montane communities. For instance, desert communities experience low and unpredictable precipitation and high, unpredictable temperatures and have longer mean flowering periods, with desert species typically flowering at any time of year in response to rain. Main conclusions: Current climate conditions shape flowering periods across biomes, with implications for phenology under climate change. Shifts in flowering periods across climatic gradients reflect changes in plant strategies, affecting patterns of plant growth and reproduction as well as the availability of floral resources for pollinators across the landscape

    A workflow to create trait databases from collections of textual taxonomic descriptions

    No full text
    There is a wealth of information about the characteristics (traits) of organisms within collections of taxonomic descriptions of plants and animals called a ‘Flora’ or ‘Fauna’ of a region. However, such knowledge is usually encoded as text paragraphs, and is thus unavailable for immediate analysis. In order to make use of the knowledge embedded in taxon descriptions, text must be organised into standardised, queryable datasets. Despite the recent development of natural language processing (NPL) tools to analyse taxonomic descriptions to extract trait values, the complexity and specificity of these methods currently limits broad application. Accessible and flexible methods for extracting traits across large numbers of taxonomic descriptions are therefore needed. Here we present such an R-based workflow, which can be adapted for use on any organismal group using a language familiar to researchers in the biological sciences. We document a way to (1) assemble tens of thousands of taxonomic descriptions into a standardised format, (2) split the taxon descriptions into different topics, (3) extract trait values as defined by the user, and (4) assign traits described at the genus and family level to lower level taxa to maximise trait coverage. As a case study, we apply the workflow to a collection of taxonomic descriptions drawn from Australia's state and national floras and describe useful techniques for creating workflows and thereby research-grade trait datasets. Using this method, we were able to extract 615,812 trait values from 38 different plant traits. Trait data collated using this method are freely available as part of the AusTraits trait database and have already contributed to analyses in several scientific publications

    Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: Implications for character evolution

    No full text
    Magnoliales, consisting of six families of tropical to warm-temperate woody angiosperms, were long considered the most archaic order of flowering plants, but molecular analyses nest them among other eumagnoliids. Based on separate and combined analyses of a morphological matrix (115 characters) and multiple molecular data sets (seven variable chloroplast loci and five more conserved genes; 14 536 aligned nucleotides), phylogenetic relationships were investigated simultaneously within Magnoliales and Myristicaceae, using Laurales, Winterales, and Piperales as outgroups. Despite apparent conflicts among data sets, parsimony and maximum likelihood analyses of combined data converged towards a fully resolved and well-supported topology, consistent with higher-level molecular analyses except for the position of Magnoliaceae: Myristicaceae + (Magnoliaceae + ((Degeneria+Galbulimima) + (Eupomatia+ Annonaceae))). Based on these results, we discuss morphological evolution in Magnoliales and show that several supposedly plesiomorphic traits are synapomorphies of Magnoliineae, the sister group of Myristicaceae (e.g. laminar stamens). Relationships within Annonaceae are also resolved with strong support (Anaxagorea basal, then ambavioids). In contrast, resolution of relationships within Myristicaceae is difficult and still incomplete, due to a very low level of molecular divergence within the family and a long stem lineage. However, our data provide good evidence that Mauloutchia is nested among other Afro-Malagasy genera, contradicting the view that its androecium and pollen are plesiomorphic © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142, 125–186
    corecore