13,612 research outputs found

    Solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction

    Full text link
    We describe a solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction. We derive self-consistent equations of the order parameters and obtain three non-trivial solutions characterized by the rotation number. We also derive relevant characteristics such as the location-dependent distributions of the resultant frequencies of desynchronized oscillators. Simulation results closely agree with the theoretical ones

    When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State

    Full text link
    During development, morphogen gradients precisely determine the position of gene expression boundaries despite the inevitable presence of fluctuations. Recent experiments suggest that some morphogen gradients may be interpreted prior to reaching steady-state. Theoretical work has predicted that such systems will be more robust to embryo-to-embryo fluctuations. By analysing two experimentally motivated models of morphogen gradient formation, we investigate the positional precision of gene expression boundaries determined by pre-steady-state morphogen gradients in the presence of embryo-to-embryo fluctuations, internal biochemical noise and variations in the timing of morphogen measurement. Morphogens that are direct transcription factors are found to be particularly sensitive to internal noise when interpreted prior to steady-state, disadvantaging early measurement, even in the presence of large embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors can be measured prior to steady-state without significant decrease in positional precision provided fluctuations in the timing of measurement are small. Applying our results to experiment, we predict that Bicoid, a transcription factor morphogen in Drosophila, is unlikely to be interpreted prior to reaching steady-state. We also predict that Activin in Xenopus and Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be decoded in pre-steady-state.Comment: 18 pages, 3 figure

    The significance of lifeworld and the case of hospice

    Get PDF
    Questions on what it means to live and die well are raised and discussed in the hospice movement. A phenomenological lifeworld perspective may help professionals to be aware of meaningful and important dimensions in the lives of persons close to death. Lifeworld is not an abstract philosophical term, but rather the opposite. Lifeworld is about everyday, common life in all its aspects. In the writings of Cicely Saunders, known as the founder of the modern hospice movement, facets of lifeworld are presented as important elements in caring for dying patients. Palliative care and palliative medicine today are, in many ways, replacing hospices. This represents not only a change in name, but also in the main focus. Hospice care was originally very much about providing support and comfort for, and interactions with the patients. Improved medical knowledge today means improved symptomatic palliation, but also time and resources spent in other ways than before. Observations from a Nordic hospice ward indicate that seriously ill and dying persons spend much time on their own. Different aspects of lifeworld and intersubjectivity in the dying persons’ room is presented and discussed

    Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0<z<60 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    Full text link
    We calculate the intergalactic photon density as a function of both energy and redshift for 0 < z < 6 for photon energies from .003 eV to the Lyman limit cutoff at 13.6 eV in a Lambda-CDM universe with ΩΛ=0.7\Omega_{\Lambda} = 0.7 and Ωm=0.3\Omega_{m} = 0.3. Our galaxy evolution model gives results which are consistent with Spitzer deep number counts and the spectral energy distribution of the extragalactic background radiation. We use our photon density results to extend previous work on the absorption of high energy gamma-rays in intergalactic space owing to interactions with low energy photons and the 2.7 K cosmic background radiation. We calculate the optical depth of the universe, tau, for gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from ~0 to 5. We also give an analytic fit with numerical coefficients for approximating τ(Eγ,z)\tau(E_{\gamma}, z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z = 0.117 and compare it with the spectrum observed by the H.E.S.S. air Cherenkov gamma-ray telescope array.Comment: final version to be published in Ap

    Reconstruction of Schiaparelli and Comars Flight Data

    Get PDF
    ESA recently flew an entry, descent, and landing demonstrator module called Schiaparelli that entered the atmosphere of Mars on the 19th of October, 2016. The instrumentation suite included heatshield and backshell pressure transducers and thermocouples (known as AMELIA) and backshell radiation and direct heatflux-sensing sensors (known as COMARS and ICOTOM). Due to the failed landing of Schiaparelli, only a subset of the flight data was transmitted before and after plasma black-out. The goal of this paper is to present comparisons of the flight data with calculations from NASA simulation tools, DPLR/NEQAIR and LAURA/HARA. DPLR and LAURA are used to calculate the flowfield around the vehicle and surface properties, such as pressure and convective heating. The flowfield data are passed to NEQAIR and HARA to calculate the radiative heat flux. Comparisons will be made to the COMARS total heat flux, radiative heat flux and pressure measurements. Results will also be shown against the reconstructed heat flux which was calculated from an inverse analysis of the AMELIA thermocouple data performed by Astrium. Preliminary calculations are presented in this abstract. The aerodynamics of the vehicle and certain as yet unexplained features of the inverse analysis and forebody data will be investigated

    Interfacing GHz-bandwidth heralded single photons with a room-temperature Raman quantum memory

    Full text link
    Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to actively select successful events. High time-bandwidth-product quantum memories - devices that store and retrieve single photons on-demand - provide an efficient remedy via active synchronisation. Here we interface a GHz-bandwidth heralded single-photon source and a room-temperature Raman memory with a time-bandwidth product exceeding 1000. We store heralded single photons and observe a clear influence of the input photon statistics on the retrieved light, which agrees with our theoretical model. The preservation of the stored field's statistics is limited by four-wave-mixing noise, which we identify as the key remaining challenge in the development of practical memories for scalable photonic information processing
    corecore