research

Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0<z<60 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

Abstract

We calculate the intergalactic photon density as a function of both energy and redshift for 0 < z < 6 for photon energies from .003 eV to the Lyman limit cutoff at 13.6 eV in a Lambda-CDM universe with ΩΛ=0.7\Omega_{\Lambda} = 0.7 and Ωm=0.3\Omega_{m} = 0.3. Our galaxy evolution model gives results which are consistent with Spitzer deep number counts and the spectral energy distribution of the extragalactic background radiation. We use our photon density results to extend previous work on the absorption of high energy gamma-rays in intergalactic space owing to interactions with low energy photons and the 2.7 K cosmic background radiation. We calculate the optical depth of the universe, tau, for gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from ~0 to 5. We also give an analytic fit with numerical coefficients for approximating τ(Eγ,z)\tau(E_{\gamma}, z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z = 0.117 and compare it with the spectrum observed by the H.E.S.S. air Cherenkov gamma-ray telescope array.Comment: final version to be published in Ap

    Similar works