We calculate the intergalactic photon density as a function of both energy
and redshift for 0 < z < 6 for photon energies from .003 eV to the Lyman limit
cutoff at 13.6 eV in a Lambda-CDM universe with ΩΛ=0.7 and
Ωm=0.3. Our galaxy evolution model gives results which are
consistent with Spitzer deep number counts and the spectral energy distribution
of the extragalactic background radiation. We use our photon density results to
extend previous work on the absorption of high energy gamma-rays in
intergalactic space owing to interactions with low energy photons and the 2.7 K
cosmic background radiation. We calculate the optical depth of the universe,
tau, for gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at
redshifts from ~0 to 5. We also give an analytic fit with numerical
coefficients for approximating τ(Eγ,z). As an example of the
application of our results, we calculate the absorbed spectrum of the blazar
PKS 2155-304 at z = 0.117 and compare it with the spectrum observed by the
H.E.S.S. air Cherenkov gamma-ray telescope array.Comment: final version to be published in Ap