565 research outputs found

    The impact of molecular biology on assessment of water quality: advantages and limitations of current techniques

    Get PDF
    The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future

    Faster juvenile growth promotes earlier sex change in a protandrous hermaphrodite (barramundi Lates calcarifer)

    Get PDF
    The relationship between growth and sexual maturation is central to understanding the dynamics of animal populations which exhibit indeterminate growth. In sequential hermaphrodites, which undergo post-maturation sex change, the size and age at which sex change occurs directly affects reproductive output and hence population productivity. However, these traits are often labile, and may be strongly influenced by heterogenous growth and mortality rates. We analysed otolith microstructure of a protandrous (i.e., male-to-female) fish (barramundi Lates calcarifer) to examine growth in relation to individual variation in the timing of sex change. Growth trajectories of individuals with contrasting life histories were examined to elucidate the direction and extent to which growth rate influences the size and age individuals change sex. Then, the relationships between growth rate, maturation schedules and asymptotic maximum size were explored to identify potential trade-offs between age at female maturity and growth potential. Rapid growth was strongly associated with decreased age at sex change, but this was not accompanied by a decrease in size at sex change. Individuals that were caught as large females grew faster than those caught as males, suggesting that fast-growing individuals ultimately obtain higher fitness and therefore make a disproportionate contribution to population fecundity. These results indicate that individual-level variation in maturation schedules is not reflective of trade-offs between growth and reproduction. Rather, we suggest that conditions experienced during the juvenile phase are likely to be a key determinant of post-maturation fitness. These findings highlight the vulnerability of sex-changing species to future environmental change and harvest

    Large-scale Roll Out of Electronic Longitudinal Mood-Monitoring for Research in Affective Disorders: Report From the UK Bipolar Disorder Research Network

    Get PDF
    Background Electronic longitudinal mood monitoring has been shown to be acceptable to patients with affective disorders within clinical settings, but its use in large-scale research has not yet been established. Methods Using both postal and email invitations, we invited 4080 past research participants with affective disorders who were recruited into the Bipolar Disorder Research Network (BDRN) over a 10 year period to participate in online weekly mood monitoring. In addition, since January 2015 we have invited all newly recruited BDRN research participants to participate in mood monitoring at the point they were recruited into BDRN. Results Online mood monitoring uptake among past participants was 20, and among new participants to date was 46 with participants recruited over the last year most likely to register (61). More than 90 mood monitoring participants engaged for at least one month, with mean engagement period greater than one year (58 weeks) and maximum engagement for longer than three years (165 weeks). There were no significant differences in the proportion of past and new BDRN participants providing data for at least 4 weeks (91, 92 respectively), 3 months (78, 82), 6 months (65, 54) or one year (51, 44). Limitations Our experiences with recruiting participants for electronic prospective mood monitoring may not necessarily generalise fully to research situations that are very different from those we describe. Conclusions Large-scale electronic longitudinal mood monitoring in affective disorders for research purposes is feasible with uptake highest among newly recruited participants

    Polarisation of equine pregnancy outcome is associated with a maternal MHC class I allele

    Get PDF
    Identification of risk factors which are associated with severe clinical signs can assist in the management of disease outbreaks and indicate future research areas. Pregnancy loss during late gestation in the mare compromises welfare, reduces fecundity and has financial implications for horse owners. This retrospective study focussed on the identification of risk factors associated with pregnancy loss among 46 Thoroughbred mares on a single British stud farm, with some but not all losses involving equid herpesvirus-1 (EHV-1) infection. In a sub-group of 30 mares, association between pregnancy loss and the presence of five common Thoroughbred horse haplotypes of the equine Major Histocompatibility Complex (MHC) was assessed. This involved development of sequence specific, reverse transcriptase polymerase chain reactions and in several mares, EHV-1 specific, cytotoxic T lymphocyte activity. Of the 46 mares, 10 suffered late gestation pregnancy loss or neonatal foal death, five of which were EHV-1 positive. Maternal factors including age, parity, number of EHV-1 specific vaccinations and the number of days between final vaccination and foaling or abortion were not significantly associated with pregnancy loss. In contrast, a statistically significant association between the presence of the MHC class I B2 allele and pregnancy loss was identified, regardless of the fetus / foal’s EHV-1 status (p=0.002). In conclusion, this study demonstrated a significantly positive association between pregnancy loss in Thoroughbred mares and a specific MHC class I allele in the mother. This association requires independent validation and further investigation of the mechanism by which the mare’s genetic background contributes to pregnancy outcome

    Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide

    Get PDF
    The aims of this study were to compare methods for examining measurements of CH4 and CO2 emissions of dairy cows during milking and to assess repeatability and variation of CH4 emissions among individual dairy cows. Measurements of CH4 and CO2 emissions from 36 cows were collected in 3 consecutive feeding periods. In the first period, cows were fed a commercial partial mixed ration (PMR) containing 69% forage. In the second and third periods, the same 36 cows were fed a high-forage PMR ration containing 75% forage, with either a high grass silage or high maize silage content. Emissions of CH4 during each milking were examined using 2 methods. First, peaks in CH4 concentration due to eructations during milking were quantified. Second, ratios of CH4 and CO2 average concentrations during milking were calculated. A linear mixed model was used to assess differences between PMR. Variation in CH4 emissions was observed among cows after adjusting for effects of lactation number, week of lactation, diet, individual cow, and feeding period, with coefficients of variation estimated from variance components ranging from 11 to 14% across diets and methods of quantifying emissions. No significant difference was detected between the 3 PMR in CH4 emissions estimated by either method. Emissions of CH4 calculated from eructation peaks or as CH4 to CO2 ratio were positively associated with forage dry matter intake. Ranking of cows according to CH4 emissions on different diets was correlated for both methods, although rank correlations and repeatability were greater for CH4 concentration from eructation peaks than for CH4-to-CO2 ratio. We conclude that quantifying enteric CH4 emissions either using eructation peaks in concentration or as CH4-to-CO2 ratio can provide highly repeatable phenotypes for ranking cows on CH4 output

    Variation in enteric methane emissions among cows on commercial dairy farms

    Get PDF
    Methane (CH4) emissions by dairy cows vary with feed intake and diet composition. Even when fed on the same diet at the same intake, however, variation between cows in CH4 emissions can be substantial. The extent of variation in CH4 emissions among dairy cows on commercial farms is unknown, but developments in methodology now permit quantification of CH4 emissions by individual cows under commercial conditions. The aim of this research was to assess variation among cows in emissions of eructed CH4 during milking on commercial dairy farms. Enteric CH4 emissions from 1,964 individual cows across 21 farms were measured for at least 7 days per cow using CH4 analysers at robotic milking stations. Cows were predominantly of Holstein Friesian breed and remained on the same feeding systems during sampling. Effects of explanatory variables on average CH4 emissions per individual cow were assessed by fitting a linear mixed model. Significant effects were found for week of lactation, daily milk yield and farm. The effect of milk yield on CH4 emissions varied among farms. Considerable variation in CH4 emissions was observed among cows after adjusting for fixed and random effects, with the coefficient of variation ranging from 22 to 67% within farms. This study confirms that enteric CH4 emissions vary among cows on commercial farms, suggesting that there is considerable scope for selecting individual cows and management systems with reduced emissions

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Probing Primordial Non-Gaussianity with Large-Scale Structure

    Full text link
    We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω≠1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla
    • …
    corecore