5 research outputs found

    Control of calcium phosphate nucleation and transformation through interactions of enamelin and amelogenin exhibits the "goldilocks effect"

    Get PDF
    Although amelogenin comprises the vast majority of the matrix that templates calcium phosphate nucleation during enamel formation, other proteins, particularly enamelin, are also known to play an important role in the formation of enamel's intricate architecture. However, there is little understanding of the interplay between amelogenin and enamelin in controlling processes of mineral nucleation and growth. Here, we used an in vitro model to investigate the impact of enamelin interaction with amelogenin on calcium phosphate nucleation for a range of enamelin-to-amelogenin ratios. We found that amelogenin alone is a weak promoter of nucleation, but addition of enamelin enhanced nucleation rates in a highly nonlinear, nonmonotonic manner reaching a sharp maximum at a ratio of 1:50 enamelin/amelogenin. We provide a phenomenological model to explain this effect that assumes only isolated enamelin proteins can act as sites of enhanced nucleation, while enamelin oligomers cannot. Even when interaction is random, the model reproduces the observed behavior, suggesting a simple means to tightly control the timing and extent of nucleation and phase transformation by amelogenin and enamelin

    Control of calcium phosphate nucleation and transformation through interactions of enamelin and amelogenin exhibits the goldilocks effect

    No full text
    \u3cp\u3eAlthough amelogenin comprises the vast majority of the matrix that templates calcium phosphate nucleation during enamel formation, other proteins, particularly enamelin, are also known to play an important role in the formation of enamel's intricate architecture. However, there is little understanding of the interplay between amelogenin and enamelin in controlling processes of mineral nucleation and growth. Here, we used an in vitro model to investigate the impact of enamelin interaction with amelogenin on calcium phosphate nucleation for a range of enamelin-to-amelogenin ratios. We found that amelogenin alone is a weak promoter of nucleation, but addition of enamelin enhanced nucleation rates in a highly nonlinear, nonmonotonic manner reaching a sharp maximum at a ratio of 1:50 enamelin/amelogenin. We provide a phenomenological model to explain this effect that assumes only isolated enamelin proteins can act as sites of enhanced nucleation, while enamelin oligomers cannot. Even when interaction is random, the model reproduces the observed behavior, suggesting a simple means to tightly control the timing and extent of nucleation and phase transformation by amelogenin and enamelin.\u3c/p\u3

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi
    corecore