933 research outputs found
The Beam Conditions Monitor of the LHCb Experiment
The LHCb experiment at the European Organization for Nuclear Research (CERN)
is dedicated to precision measurements of CP violation and rare decays of B
hadrons. Its most sensitive components are protected by means of a Beam
Conditions Monitor (BCM), based on polycrystalline CVD diamond sensors. Its
configuration, operation and decision logics to issue or remove the beam permit
signal for the Large Hadron Collider (LHC) are described in this paper.Comment: Index Terms: Accelerator measurement systems, CVD, Diamond, Radiation
detector
Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas
The hard x-ray emission in the energy range of 30-300 keV from copper plasmas
produced by 100 fs, 806 nm laser pulses at intensities in the range of
10 W cm is investigated. We demonstrate that surface
roughness of the targets overrides the role of polarization state in the
coupling of light to the plasma. We further show that surface roughness has a
significant role in enhancing the x-ray emission in the above mentioned energy
range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Маркшейдерська школа Національного гірничого університету
Викладена історія створення та розвитку маркшейдерської школи в НГУ протягом 110 років.Изложена история создания и развития маркшейдерской школы в НГУ в течение 110 лет.History of creation and development ofsurveyor school is expounded in NMU during 110 years
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
The generation of electron surface oscillations in overdense plasmas
irradiated at normal incidence by an intense laser pulse is investigated.
Two-dimensional (2D) particle-in-cell simulations show a transition from a
planar, electrostatic oscillation at , with the laser
frequency, to a 2D electromagnetic oscillation at frequency and
wavevector . A new electron parametric instability, involving the
decay of a 1D electrostatic oscillation into two surface waves, is introduced
to explain the basic features of the 2D oscillations. This effect leads to the
rippling of the plasma surface within a few laser cycles, and is likely to have
a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for
publication in Phys. Rev. Let
Dynamics of viscous amphiphilic films supported by elastic solid substrates
The dynamics of amphiphilic films deposited on a solid surface is analyzed
for the case when shear oscillations of the solid surface are excited. The two
cases of surface- and bulk shear waves are studied with film exposed to gas or
to a liquid. By solving the corresponding dispersion equation and the wave
equation while maintaining the energy balance we are able to connect the
surface density and the shear viscocity of a fluid amphiphilic overlayer with
experimentally accessible damping coefficients, phase velocity, dissipation
factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma
Spectral shaping of laser generated proton beams
The rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2 MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations
Multijoule scaling of laser-induced condensation in air
Using 100 TW laser pulses, we demonstrate that laser-induced nanometric
particle generation in air increases much faster than the beam-averaged
incident intensity. This increase is due to a contribution from the photon
bath, which adds up with the previously identified one from the filaments and
becomes dominant above 550 GW/cm2. It appears related to ozone formation via
multiphotondissociation of the oxygen molecules and demonstrates the critical
need for further increasing the laser energy in view of macroscopic effects in
laser-induced condensation
Room temperature triplet state spectroscopy of organic semiconductors
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088
- …
