267 research outputs found

    Biofilm monitoring coupon system and method of use

    Get PDF
    An apparatus and method is disclosed for biofilm monitoring of a water distribution system which includes the mounting of at least one fitting in a wall port of a manifold in the water distribution system with a passage through the fitting in communication. The insertion of a biofilm sampling member is through the fitting with planar sampling surfaces of different surface treatment provided on linearly arrayed sample coupons of the sampling member disposed in the flow stream in edge-on parallel relation to the direction of the flow stream of the manifold under fluid-tight sealed conditions. The sampling member is adapted to be aseptically removed from or inserted in the fitting and manifold under a positive pressure condition and the fitting passage sealed immediately thereafter by appropriate closure means so as to preclude contamination of the water distribution system through the fitting. The apparatus includes means for clamping the sampling member and for establishing electrical continuity between the sampling surfaces and the system for minimizing electropotential effects. The apparatus may also include a plurality of fittings and sampling members mounted on the manifold to permit extraction of the sampling members in a timed sequence throughout the monitoring period

    Technology development for lunar base water recycling

    Get PDF
    This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated

    Regenerable biocide delivery unit

    Get PDF
    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ

    Iodine sorption study on the proposed use of Viton A in a shuttle galley water accumulator

    Get PDF
    The installation of a Viton A accumulator in the Shuttle galley has been proposed to prevent overpressurization of the hot water supply system. A laboratory study has been conducted to determine if there would be any interaction between the Viton A material and the iodine used to disinfect the water. Coupons of Viton A were exposed for 24 hours to aqueous iodine solutions similar in quality to the Shuttle's potable water. Changes in the iodine residual were monitored to determine the rate of iodine sorption by the coupon. Total organic carbon (TOC) was monitored to determine the rate of desorption of organic materials from the Viton A. The same coupons were then soaked in reagent-grade water for 24 hours, and iodine was monitored to determine the rate of iodine desorption. The coupons were again exposed to iodine solutions for 24 hours and iodine and TOC were monitored. No significant change in the iodine sorption rate was detected between the first and second exposures. A triangle taste test indicated at a 1 percent confidence level that the water exposed to Viton A had a different taste which was less acceptable to the panelists

    Quality requirements for reclaimed/recycled water

    Get PDF
    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants

    Paper Session III-A - NASA Technology Provided Alternative Water Purification Method for Domestic Use

    Get PDF
    A need for a simple and effective method of providing biologically safe potable water on the Shuttle Program resulted in the development of the Microbial Check Valve (MCV®1 ). Subsequently, the need for extended duration potable water microbiological treatment on the proposed International Space Station required the development of the Regenerable Microbial Check Valve (RMCV). This paper will describe the technology relating to this development and discuss the commercial potential of the devices. The MCV® is a flow through canister containing iodinated ion exchange resin. It provides a means to disinfect the Space Shuttle fuel cell produced water prior to its stowage and use as drinking water. The MCV® produces a significant contact kill of a broad variety of microorganisms and additionally provides a controlled release of biocidal concentrations of elemental iodine into the flowing water stream. Similar devices are used as bacterial filters to prevent back contamination of the water supply when cooling water is supplied to the Extravehicular Mobility Units (EMU) used by astronauts during spacewalks. The patented RMCV provides for in situ replenishment of the iodine in the resin bed. This will make the RMCV useful for protracted use in the International Space Station when extended space occupancy is planned. The basic MCV® technology is currently being applied in terrestrial water purification systems ranging in size from portable travel filters and countertop units for home use to 15 gpm units for schools, hospitals, and other community facilities in third world nations. The RMCV with its improved cost effectiveness is being developed for significantly larger applications up to small city size. The development of the MCV® and RMCV technology are examples of how a space flight need has led to the development of technology that has commercial terrestrial applications. The technology developed in this instance provides for a simple, effective and reliable means of providing microbially safe drinking water in a variety of applications

    Ammonia Monitor

    Get PDF
    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia

    Comet C/2004 Q2 (MACHHOLZ): Parent Volatiles, a Search for Deuterated Methane, and Constraint on the CH4 Spin Temperature

    Get PDF
    High-dispersion (l/dl ~ 25,000) infrared spectra of Comet C/2004 Q2 (Machholz) were acquired on Nov. 28-29, 2004, and Jan. 19, 2005 (UT dates) with NIRSPEC at the Keck-2 telescope on Mauna Kea. We detected H2O, CH4, C2H2, C2H6, CO, H2CO, CH3OH, HCN, and NH3 and we conducted a sensitive search for CH3D. We report rotational temperatures, production rates, and mixing ratios (with respect to H2O) at heliocentric distances of 1.49 AU (Nov. 2004) and 1.21 AU (Jan. 2005). We highlight three principal results: (1) The mixing ratios of parent volatiles measured at 1.49 AU and 1.21 AU agree within confidence limits, consistent with homogeneous composition in the mean volatile release from the nucleus of C/2004 Q2. Notably, the relative abundance of C2H6/C2H2 is substantially higher than those measured in other comets, while the mixing ratios C2H6/H2O, CH3OH/H2O, and HCN/H2O are similar to those observed in comets, referred to as "organics-normal". (2) The spin temperature of CH4 is > 35-38 K, an estimate consistent with the more robust spin temperature found for H2O. (3) We obtained a 3s upper limit of CH3D/CH4 < 0.020 (D/H < 0.005). This limit suggests that methane released from the nucleus of C/2004 Q2 is not dominated by a component formed in extremely cold (near 10 K) environments. Formation pathways of both interstellar and nebular origin consistent with the measured D/H in methane are discussed. Evaluating the relative contributions of these pathways requires further modeling of chemistry including both gas-phase and gas-grain processes in the natal interstellar cloud and in the protoplanetary disk.Comment: Accepted by The Astrophysical Journa

    A Search for Variation in the H_2O Ortho-Para Ratio and Rotational Temperature in the Inner Coma of Comet C/2004 Q2 (Machholz)

    Get PDF
    We present spatially resolved measurements of the rotational temperature and ortho-para ratio for H_2O in the inner coma of the Oort Cloud comet C/2004 Q2 (Machholz). Our results are based on direct simultaneous detections of ortho-H_2O and para-H_2O via "hot-band" fluorescence near 2.9 μm. We find a well-defined decline in rotational temperature with increasing nucleocentric distance (up to ~1000 km). The ortho-para ratio remains constant (within stochastic uncertainty) with increasing nucleocentric distance and is close to the statistical equilibrium value of 3.0 (2.86 ± 0.06 [0.17], including, respectively, stochastic [systematic] uncertainty), resulting in spin temperature T_(spin) ≥ 34 K. We compare the present results with those reported for other comets and discuss the difficulties in interpreting spin temperatures deduced from measured ortho-para ratios. Improved understanding of the special conditions that enable nuclear spin conversion would test the extent to which derived spin temperatures reflect the formative history or the processing record of cometary ices
    corecore