16 research outputs found

    Application of feature extraction and artificial intelligence techniques for increasing the accuracy of x-ray radiation based two phase flow meter

    Get PDF
    The increasing consumption of fossil fuel resources in the world has placed emphasis on flow measurements in the oil industry. This has generated a growing niche in the flowmeter industry. In this regard, in this study, an artificial neural network (ANN) and various feature extractions have been utilized to enhance the precision of X-ray radiation-based two-phase flowmeters. The detection system proposed in this article comprises an X-ray tube, a NaI detector to record the photons, and a Pyrex-glass pipe, which is placed between detector and source. To model the mentioned geometry, the Monte Carlo MCNP-X code was utilized. Five features in the time domain were derived from the collected data to be used as the neural network input. Multi-Layer Perceptron (MLP) was applied to approximate the function related to the input-output relationship. Finally, the introduced approach was able to correctly recognize the flow pattern and predict the volume fraction of two-phase flow’s components with root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of less than 0.51, 0.4 and 1.16%, respectively. The obtained precision of the proposed system in this study is better than those reported in previous works

    Applications of discrete wavelet transform for feature extraction to increase the accuracy of monitoring systems of liquid petroleum products

    Get PDF
    This paper presents a methodology to monitor the liquid petroleum products which pass through transmission pipes. A simulation setup consisting of an X-ray tube, a detector, and a pipe was established using a Monte Carlo n-particle X-version transport code to investigate a two-by-two mixture of four different petroleum products, namely, ethylene glycol, crude oil, gasoline, and gasoil, in deferent volumetric ratios. After collecting the signals of each simulation, discrete wavelet transform (DWT) was applied as the feature extraction system. Then, the statistical feature, named the standard deviation, was calculated from the approximation of the fifth level, and the details of the second to fifth level provide appropriate inputs for neural network training. Three multilayer perceptron neural networks were utilized to predict the volume ratio of three types of petroleum products, and the volume ratio of the fourth product could easily be obtained from the results of the three presented networks. Finally, a root mean square error of less than 1.77 was obtained in predicting the volume ratio, which was much more accurate than in previous research. This high accuracy was due to the use of DWT for feature extraction

    Modeling pan evaporation using Gaussian Process Regression, K-Nearest Neighbors, Random Forest, and Support Vector Machines: Comparative analysis

    Get PDF
    Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters

    Application of feature extraction and artificial intelligence techniques for increasing the accuracy of X-ray radiation based two phase flow meter

    Get PDF
    The increasing consumption of fossil fuel resources in the world has placed emphasis on flow measurements in the oil industry. This has generated a growing niche in the flowmeter industry. In this regard, in this study, an artificial neural network (ANN) and various feature extractions have been utilized to enhance the precision of X-ray radiation-based two-phase flowmeters. The detection system proposed in this article comprises an X-ray tube, a NaI detector to record the photons, and a Pyrex-glass pipe, which is placed between detector and source. To model the mentioned geometry, the Monte Carlo MCNP-X code was utilized. Five features in the time domain were derived from the collected data to be used as the neural network input. Multi-Layer Perceptron (MLP) was applied to approximate the function related to the input-output relationship. Finally, the introduced approach was able to correctly recognize the flow pattern and predict the volume fraction of two-phase flow’s components with root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of less than 0.51, 0.4 and 1.16%, respectively. The obtained precision of the proposed system in this study is better than those reported in previous works

    Frequency domain feature extraction investigation to increase the accuracy of an intelligent nondestructive system for volume fraction and regime determination of gas-water-oil three-phase flows

    No full text
    In this research, a methodology consisting of an X-ray tube, one Pyrex-glass pipe, and two NaI detectors was investigated to determine the type of flow regimes and volume fractions of gas-oil-water three-phase flows. Three prevalent flow patterns—namely annular, stratified, and homogenous—in various volume percentages—10% to 80% with the step of 10%—were simulated by MCNP-X code. After simulating all the states and collecting the signals, the Fast Fourier Transform (FFT) was used to convert the data to the frequency domain. The first and second dominant frequency amplitudes were extracted to be used as the inputs of neural networks. Three Radial Basis Function Neural Networks (RBFNN) were trained for determining the type of flow regimes and predicting gas and water volume fractions. The correct detection of all flow regimes and the determination of volume percentages with a Mean Relative Error (MRE) of less than 2.02% shows that the use of frequency characteristics in determining these important parameters can be very effective. Although X-ray radiation-based two-phase flowmeters have a lot of advantages over the radioisotope-based ones, they suffer from lower measurement accuracy. One reason might be that the X-ray multi-energy spectrum recorded in the detector has been analyzed in a simple way. It is worth mentioning that the X-ray sources generate multi-energy photons despite radioisotopes that generate single energy photons, therefore data analyzing of radioisotope sources would be easier than X-ray ones. As mentioned, one of the problems researchers have encountered is the lower measurement accuracy of the X-ray, radiation-based three-phase flowmeters. The aim of the present work is to resolve this problem by improving the precision of the X-ray, radiation-based three-phase flowmeter using artificial neural network (ANN) and feature extraction techniques

    Applications of discrete wavelet transform for feature extraction to increase the accuracy of monitoring systems of liquid petroleum products

    Get PDF
    This paper presents a methodology to monitor the liquid petroleum products which pass through transmission pipes. A simulation setup consisting of an X-ray tube, a detector, and a pipe was established using a Monte Carlo n-particle X-version transport code to investigate a two-by-two mixture of four different petroleum products, namely, ethylene glycol, crude oil, gasoline, and gasoil, in deferent volumetric ratios. After collecting the signals of each simulation, discrete wavelet transform (DWT) was applied as the feature extraction system. Then, the statistical feature, named the standard deviation, was calculated from the approximation of the fifth level, and the details of the second to fifth level provide appropriate inputs for neural network training. Three multilayer perceptron neural networks were utilized to predict the volume ratio of three types of petroleum products, and the volume ratio of the fourth product could easily be obtained from the results of the three presented networks. Finally, a root mean square error of less than 1.77 was obtained in predicting the volume ratio, which was much more accurate than in previous research. This high accuracy was due to the use of DWT for feature extraction

    A Survey on the Prevalence and Histopathological Findings of Lernaea spp. in Schizocypris altidorsalis Fish From Chahnimeh Lakes and Hamoun Wetland in Southeast Iran

    No full text
    The aim of the present study was to assess the prevalence and pathology of Lernaeid parasites in Schizocypris altidorsalis (Anjak Fish) fish from Chahnimeh lakes and Hamoun wetland in Sistan and Baluchestan, Iran. A total of 1000 S. altidorsalis fish were collected from October 2014 to September 2015. The prevalence of Lernaea spp. infestation in examined fish was found to be 61.1% (611/1000). Among the examined weight groups, the highest infestation rate (61.7%) was recorded in the weight group of 80-100g, followed by 60.5% and 58.7% in 100-150g and 150-200g weight groups, respectively (P>0.05). The frequency of Lernaea spp. in winter (75.2%) was higher than other seasons and the lowest prevalence was observed in summer (38%). The association between the season and the prevalence of Lernaea spp. infestation was statistically significant (P<0.001). The histopathological examination of the sections revealed lesions and ulcers in the epidermis, dermis, and muscles of the fish. Chronic inflammatory reaction and infiltration of inflammatory cells including lymphocytes, plasma cells, macrophages, and eosinophils around the parasite attachment sites were observed. In severe cases, various degrees of degeneration and necrosis were seen in the muscle. The present survey revealed a high prevalence of Lernaeid parasites in S. altidorsalis fish and necessitates appropriate control programs
    corecore