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Abstract: This paper presents a methodology to monitor the liquid petroleum products which pass
through transmission pipes. A simulation setup consisting of an X-ray tube, a detector, and a pipe
was established using a Monte Carlo n-particle X-version transport code to investigate a two-by-
two mixture of four different petroleum products, namely, ethylene glycol, crude oil, gasoline, and
gasoil, in deferent volumetric ratios. After collecting the signals of each simulation, discrete wavelet
transform (DWT) was applied as the feature extraction system. Then, the statistical feature, named
the standard deviation, was calculated from the approximation of the fifth level, and the details of
the second to fifth level provide appropriate inputs for neural network training. Three multilayer
perceptron neural networks were utilized to predict the volume ratio of three types of petroleum
products, and the volume ratio of the fourth product could easily be obtained from the results of
the three presented networks. Finally, a root mean square error of less than 1.77 was obtained in
predicting the volume ratio, which was much more accurate than in previous research. This high
accuracy was due to the use of DWT for feature extraction.

Keywords: wavelet transform; feature extracting; monitoring system; petroleum products

1. Introduction

In the petrochemical industry, poly-pipelines are commonly used to transport oil or
its derivatives to distribution centers. Using one pipeline to transport different petroleum
fluids is very cost-effective, but the existence of problems, such as combinations of various
petroleum fluids, shows the importance of developing a non-invasive method in control-
ling and detecting the interference region. For this reason, many types of research have
been conducted, which are briefly reviewed. Salgado et al. developed a petrochemical
product density detection system that included a Cs-137 source and a sodium iodide (NaI)
detector [1]. The Monte Carlo N-Particle X-version (MCNPX) transport code was used in
this study. Using an artificial neural network enabled prediction of the density of petroleum
products with high accuracy, independent of fluid composition. They also performed a
laboratory experiment to validate the Monte Carlo code, using a cesium source, a glass
pipe, and a sodium iodide detector. Different volume percentages were simulated for both
oil and water fluids. The volume percentages could be detected with an accuracy of 1% [2].
In other studies, researchers simulated two-phase [3–5] and three-phase [6–8] compositions
at different volumetric percentages and different flow regimes. Various neural networks
with different training algorithms, such as MLP [9,10], RBF [11,12], adaptive neuro-fuzzy
inference systems [13], Jaya algorithms [14], and GMDH neural networks [15] were applied
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to predict volume percentages and flow regimes with high accuracy. In recent years, the
use of feature extraction techniques such as time domain [16,17], frequency domain [18],
and time–frequency domain [19] has been widely considered by researchers in this field.
In all the above mentioned studies, the researchers presented different characteristics for
distinguishing the type of flow regimes and determining the volume percentages. Sattari
et al. used GMDH neural networks to recognize the type of flow regimes [20]. They
simulated a structure including a Cs-137 radioisotope, a Pyrex pipe, and a NaI detector
using the MCNPX transport code. They extracted the time domain characteristics of the
recorded signal and considered them as neural network inputs. Estimation of volume
percentages with a RMSE of less than 1.11 was the result of this investigation.

Recently, the use of X-ray tubes has been very popular with researchers because
of their many benefits. The use of X-ray tubes as a source has the following advantages
compared to other sources such as radioisotopes: X-ray tubes can adjust the emitted photon
energy, whereas the photon emission energy is constant in radioisotopes. It should also
be noted that the activity of radioisotopes decreases over time, but X-ray tubes do not
follow this rule; X-ray tubes can be turned on and off. They are also easier to transport than
radioisotopes. In their recent study, Roshani et al. proposed a system for monitoring fluids
passing through transfer tubes [21]. Although they were able to predict the volumetric
ratio of petroleum products with a MAE of less than 2.72, the use of feature extraction
techniques can increase the accuracy of such systems. Much research has been conducted
to measure the volume fractions of two-phase [22,23] and three-phase [24,25] flows using
X-ray tubes. Researchers have claimed that the feature extraction techniques can help
increase the accuracy of determining the type of flow regimes. In their study, Hosseini
et al. [26] simulated a laboratory structure with an MCNP transport code in which they
implemented three homogeneous, stratified, and annular regimes in different volume
percentages. A cesium-137 source and a NaI detector were used in this simulation. Using
the wavelet feature extraction technique combined with a neural network, they succeeded
to fully recognize flow regimes and estimate volume percentages with an acceptable
accuracy. In another study, Henus and colleagues implemented four flow regimes in a
horizontal pipe named slug, bubble, and transitional plug–bubble flows to determine
the type of flow regimes using a gamma ray absorption technique and wavelet feature
extraction [27]. Further studies [28,29] have explored the applications of wavelet feature
extraction in the field of radiation absorption signals.

Inspired by previous research, in this study, an attempt has been made to propose
a high-precision monitoring system that can determine the volume ratio of different oil
products. This article is organized as follows: first, the structure of the simulation will be
explained in detail; the next section presents the discrete wavelet transform (DWT) method
for extracting the received signal characteristics; in the third section, multilayer perceptron
(MLP) neural networks will be discussed, and the results and accuracy of the designed
networks will be shown; the last section concludes the study.

2. Simulation System

The simulation setup consisted of an X-ray tube, a pipe, and a NaI detector (Figure 1),
and was performed using MCNPX [30]. A simulation of a typical industrial X-ray tube was
used in this study. The real X-ray source consisted of an electron source and a tungsten
target, which were mounted in an X-ray tube shield [31,32]. With the aim of reducing
the simulation calculation time, a photon source inserted in the shield was regarded as a
cathode–anode assembly in this investigation. The spectrum obtained from the TASMIC
package [33] was also implemented to model the photon source energy. Figure 2 shows
the normalized X-ray spectrum, as well as the features of X-ray peaks related to the
tungsten target (Kα1, Kα2, Kβ1, and Kβ2). The circular section on the X-ray tube which
was considered as the output window was 5 cm. Notably, the cylindrical form frequently
shaped the X-ray tube shields, which were also made of lead or steel to prevent the emission
of harmful radiation produced by X-rays.
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Figure 2. The X-ray spectrum derived from TASMIC package.

Transmission pipes are used to transport various petroleum products, some parts of
which interact with each other and are mixed together. This area is known as the interface
region. In this research, four types of petroleum products—ethylene glycol, crude oil,
gasoil, and gasoline—are considered as fluids passing through the pipe. By mixing all of
the listed products two-by-two, six combinations were obtained. Various volume ratios
from 0% to 100%, with steps of 5%, were simulated for all six different states (in this study,
118 simulations were performed in total). Data from all simulations were collected by a
simulated NaI detector and used for later processing.

3. Discrete Wavelet Transform

Discrete wavelet transform (DWT) is the most commonly used method in the filtering
of time–frequency [34]. The reduction of additive noises by DWT provides good resolution
in the frequency and time domains. Multi-resolution analysis is enabled by the DWT
method by dividing the discrete signal x(n) into low- and high-frequency components. To
determine DWT, an iterative Mallat algorithm can be applied [35,36]. The low-frequency
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component aj,k (approximately) and the high-frequency component dj,k (exactly) (Figure 3)
are the results of signal x(n) decomposition with multi-level filter banks:

aj,k = ∑
l

h(l − 2k)aj−1,m (1)

dj,k = ∑
l

g(l − 2k)aj−1,m (2)

where j is a parameter that affects the DWT scaling. k is related to the translation at each
level of the wavelet function. l is the number of levels and is an integer scale. h(l) and g(l) are
low-pass and high-pass square filters, respectively. m is utilized in the scaling function as a
translation of the j scale. Daubechies, Haar, etc., are several families of wavelet functions
that exist in wavelet transform. In the present study, a Daubechies 2 (db2) wavelet was
selected to analyze the signals received from the scintillation detector.
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means down-sampling by two.

The decomposition process of the signal obtained by the detector is illustrated in
Figure 4. According to this figure, from the fifth stage onwards, no significant high-
frequency information was obtained; thus, in this study, the signal decomposition only
continued until the fifth stage. It should be noted that the details of the first stage had
many fluctuations that show noisy behavior. The researchers believe that this signal is due
to uncertainty problems in the MCNPX transport code. Therefore, these details were not
considered for the next processing step. To provide suitable data for network inputs, the
standard deviation (STD) features of a5,1, d5,1, d4,1, d3,1, and d2,1 have been calculated. It
should be noted that this statistical characteristic has been introduced in previous studies
as an efficient time characteristic [16].

TD =

√√√√ 1
N − 1

N

∑
i=1
|xi − µ|2 (3)

µ =
1
N

N

∑
i=1

xi (4)

where xi is the primary data and N is the amount of data.
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4. MLP Neural Network

In recent years, various advanced computational approaches have been applied in dif-
ferent fields such as chemical engineering [37–44], control and electrical engineering [45–59],
pharmacy and medical science [60–67], industrial engineering [68,69], civil engineer-
ing [70–73], economic and business sciences, [74–78], mechanical engineering [79–85], en-
ergy engineering [86–89], computer and information technology [90–102], physics [103–108],
mining engineering [109–111], petroleum engineering [112–116], mathematics [117–124],
etc. MLP neural networks are one of the most powerful tools used in predicting, classifying,
modeling, and optimizing. This network has become one of the most widely used neural
networks due to the various applications for which it has been developed. This network
is able to perform nonlinear mapping with high accuracy, which is what was used as the
main solution in various problems. This is a feedforward network where the output is
calculated directly from the input without any feedback with the backpropagation (BP)
algorithm. The BP algorithm means that after determining the network’s output, first, the
weights of the final layer are corrected, and then the weights of the previous layers are
corrected respectively. The neuron model in the multilayer perceptron network includes
a nonlinear activator function. The output of a perceptron in an MLP neural network is
obtained based on Equation (6) [125,126]:

output = f

(
n

∑
i=1

xiwi + b

)
(5)

In the above equation, x represents the network inputs, w depicts the network weights,
b is the bias, f is the activating function of the neurons, and n represents the number
of inputs.
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The perceptron implementation algorithm is the first random values assigned to
weights. Perceptron is then applied to all training data. If the example is evaluated
incorrectly, the values of perceptron weights are corrected. The collected data are divided
into three categories: training, validation, and testing data. Training data are used to
estimate network weights to create a neural network model; validation data are used to test
during the training process; and test data are used to evaluate the trained network. Using
these data, the ability of the designed neural network in prediction is determined. In this
study, 70% of the data were used for training, 15% were allocated to the validation section,
and 15% were used for network testing. In this research, to find the most optimal structure,
networks with one, two, three and four layers, and with different number of neurons in
each layer, have been designed, and their functions have been evaluated. MATLAB R2018b
software was used to train neural networks.

5. Result and Discussion

In this study, the characteristics extracted in the previous section were considered the
neural network’s inputs. Three neural networks were implemented to estimate the volume
ratios of ethylene glycol, crude oil, and gasoil. By determining the volume ratio of the
three mentioned products, the ratio of the fourth product, i.e., gasoline, could easily be
calculated. Figure 5 and Table 1 show the structure of the implemented networks.
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(c) gasoil volumetric ratios.

Table 1. The specifications of the designed networks.

ANN Type
MLP

Ethylene Glycol Gasoil Crude Oil

No. of input layer neurons 5 5 5

No. of 1st hidden layer neurons 12 20 16

No. of 2nd hidden layer neurons 8 10 7

No. of 3rd hidden layer neurons 4 5 3

No. of output layer neurons 1 1 1

No. of epochs 650 800 550

Activation function used for each hidden neuron Tansig Tansig Tansig

Regression and error diagrams related to training, validation, and test data can be
seen in Figures 6–8, presenting the accuracy of the designed networks. The most important
criterion for evaluating the performance of artificial neural networks is the accuracy of
prediction. Some of the most important prediction accuracy criteria calculated in this
study are:

Root Mean Square Error (RMSE) =
∑N

j=1
(
ej
)2

N
(6)

Mean Absolut Error (MAE) =
1
N

N

∑
j=1

∣∣ej
∣∣ (7)
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where e is the error, y is the network output, and N represents the amount of data.
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Table 2. Calculated error for the implemented networks.

Training Data Validation Data Test Data

RMSE MAE RMSE MAE RMSE MAE

Ethylene glycol 1.42 1.28 1.76 1.54 1.49 1.29

Crude oil 1.21 1.08 1.28 1.19 1.42 1.30

Gasoil 1.49 1.07 1.73 1.54 1.60 1.41

6. Conclusions

In this study, the monitoring system included an X-ray tube and one NaI detector,
simulated using the MCNPX transport code. After simulating the mixture of four petroleum
products in different volume ratios and collecting data recorded by the detector, the DWT
technique was used to extract the data features. Then, the extracted features were used to
implement three MLP neural networks. It should be noted that after obtaining the volume
ratio of three products, the volume ratio of the fourth product could easily be calculated.
The three implemented neural networks predicted the volume ratio of ethylene glycol,
crude oil, and gasoil with RMSEs of less than 1.77, 1.43, and 1.74, respectively. Although
the X-ray tube, as well as radioisotopes, have been used in previous studies, applying the
DWT method for feature extraction to improve the precision of this system is the most
significant novelty of the current study.
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