76 research outputs found

    Inibição da resposta de hipersensibilidade do Tipo I da prole de camundongos mediada pela imunização materna com o ácaro Dermatophagoides pteronyssinus

    Get PDF
    The early life exposure to allergens associated with the tendency of newborns to develop Th2-biased responses, may contribute to the development of allergy during infancy. The effect of preconception immunization of A/Sn females with the dust mite Dermatophagoides pteronyssinus (Dp), were analysed on the hybrid offspring’s type I hypersensitivity response. The kinetics of Dp immunization was followed from newborn to adult age. Offspring from immune mothers did not show evidence of pre or postnatal allergen priming at humoral level. Immunization with Dp in very early life and in the postweaning period revealed a marked inhibition of offspring anti-Dp IgE and IgG1 Ab production, which remained decreased upon secondary allergenic challenge. The maternal influence on the offspring’s Ab response was specific to Dp, since their immunization with a heterologous antigen led to a normal IgE response. Taken together, maternal immunization to Dp seems to be protective in regard to the early development of allergy.A exposição precoce a alérgenos associada a tendência dos neonatos a desenvolverem respostas do tipo Th2 pode contribuir com o desenvolvimento da alergia durante a infância. O efeito da imunização de camundongos fêmeas A/Sn pré concepção com o ácaro Dermatophagoides pteronyssinus (Dp), foi analisado na resposta de hipersensibilidade tipo I da prole híbrida. A cinética da imunização dos filhotes com Dp foi avaliada da idade neonatal até a adulta. As proles de mães imunes não demonstraram evidência de sensibilização pré ou pós natal ao alérgeno pela análise dos alótipos de anticorpos. A imunização com Dp das proles derivadas de mães imunizadas no período neonatal e após o desmame revelou uma significativa inibição da produção de anticorpos IgE e IgG1 anti-Dp, permanecendo diminuída mesmo após os desafios alergênicos secundários. A inibição da resposta foi específica para o Dp considerando que a imunização com antígeno heterólogo induziu similar produção de anticorpos IgE ao grupo de proles controles. A imunização materna com Dp sugere proteger o desenvolvimento precoce de alergia nos filhotes

    Maternal immunization with ovalbumin or Dermatophagoides pteronyssinus has opposing effects on FcγRIIb expression on offspring B cells

    Get PDF
    Abstract\ud \ud Background\ud Over the last decade, our group has demonstrated that murine preconception immunization with allergens has a protective effect on allergy development in offspring. The murine model used in the present study allowed us to compare allergy induction by ovalbumin (OVA) and dust mite extract from Dermatophagoides pteronyssinus (Dp).\ud \ud \ud Findings\ud Female mice were immunized with OVA or Dp. Pups from immunized and non-immune mothers were immunized at 3 days old (do) with the same antigen used for the maternal immunization. The offspring were analyzed at 20 do. Preconceptional immunization with OVA or Dp did not increase maternal IgE serum levels, although the immunizations induced an increase in allergen-specific IgG1 Ab levels. Offspring serum analyses revealed that maternal immunization with OVA suppressed IgE production only in offspring immunized with OVA. Both preconception immunization protocols inhibited cellular influx into the airways of immunized offspring compared with controls. Similar frequencies of offspring IgM + B cells were found in the OVA- and Dp-immunized groups compared with their respective control groups. Moreover, preconception immunization with OVA enhanced FcγRIIb expression on OVA-immunized offspring B cells. In contrast, decreased FcγRIIb expression was detected on Dp-immunized offspring B cells compared with cells from the offspring of non-immune mothers.\ud \ud \ud Conclusions\ud Together, these results show that preconception OVA immunization and Dp immunization can inhibit allergy development but have opposite effects on FcγRIIb expression on offspring B cells.The authors would like to thank the Fundação de Amparo à Pesquisa\ud de São Paulo (FAPESP 2010/13262-5) and the LIM HC-FMUSP for their\ud financial support

    Physical Exercise Induces Immunoregulation of TREG, M2, and pDCs in a Lung Allergic Inflammation Model

    Get PDF
    The benefits of moderate aerobic physical exercise for allergic asthma are well-known, particularly that of the anti-inflammatory effect that occurs by reducing Th2 responses and lung remodeling. However, the mechanisms of this immunoregulation are still under investigation. In this study, we investigated the possible immunoregulatory mechanisms of lung inflammation induced by moderate aerobic exercise in an experimental asthma model. BALB/c mice were distributed into Control, Exercise (EX), OVA, and OEX groups. OVA and OEX groups were sensitized with ovalbumin (OVA) on days 0, 14, 21, 28, and 42 and were challenged with OVA aerosol three times a week from days 21 to 51. The EX and OEX groups underwent moderate aerobic physical exercise from days 21 to 51 (5 d/w, 1 h/d). The mice were euthanized on day 52. We evaluated pulmonary cytokine production, serum immunoglobulin levels, and the inflammatory cell profile in lung and mediastinal lymph nodes. OVA mice showed increased expression of IL-4, IL-6, IL-10, and TGF-β and decreased macrophage type 2 (M2) recruitment. Physical exercise did not affect the increased antibody production of IgG2a, IgG1, or IgE induced by OVA. Of note, physical exercise alone markedly increased production of anti-inflammatory cytokines such as IL-10 and TGF-β. Physical exercise in OVA-mice also increased the recruitment of M2 in the lungs, as well as the influx and activation of regulatory T cells (Tregs) and CD4 and CD8 lymphocytes. In the draining lymph nodes, it was also observed that physical exercise increased the activation of CD4 T cells, regardless of the presence of OVA. Notably, physical exercise decreased common dendritic cells' (cDCs; pro-inflammatory) expression of co-stimulatory molecules such as CD80, CD86, and ICOSL in the draining lymph nodes, as well as increased ICOSL in plasmacytoid dendritic cells (pDCs; anti-inflammatory). Together, these findings show that physical exercise modulates pulmonary allergic inflammation by increasing Treg and M2 recruitment, as well as pDCs activation, which leads to an increase in anti-inflammatory cytokines and a decrease in pro-inflammatory cells and mediators

    Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients

    Get PDF
    Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients’ cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease

    Impaired CD8+ T cell responses upon Toll-like receptor activation in common variable immunodeficiency

    Get PDF
    Abstract\ud \ud Background\ud Infections caused by bacteria or viruses are frequent in common variable immunodeficiency (CVID) patients due to antibody deficiencies, which may be associated with altered T cell function. CVID patients are frequently in contact with pathogen-associated molecular patterns (PAMPs), leading to the activation of innate immunity through Toll-like receptors (TLR) affecting T cell activation. We evaluated the effect of TLR activation on T cells in CVID patients undergoing intravenous immunoglobulin (IVIg) replacement using synthetic ligands.\ud \ud \ud Methods\ud Expression of exhaustion, activation and maturation markers on T cells from peripheral blood as well as regulatory T cells and follicular T cells in peripheral blood mononuclear cells (PBMCs) from CVID and healthy individuals were evaluated by flow cytometry. PBMCs cultured with TLR agonists were assessed for intracellular IFN-γ, TNF, IL-10, IL-17a or IL-22 secretion as monofunctional or polyfunctional T cells (simultaneous cytokine secretion) by flow cytometry.\ud \ud \ud Results\ud We found increased expression of the exhaustion marker PD-1 on effector memory CD4+ T cells (CD45RA−CCR7−) in the peripheral blood and increased expression of CD38 in terminally differentiated CD8+ T cells (CD45RA+CCR7−). Furthermore, a decreased frequency of naïve regulatory T cells (CD45RA+Foxp3low), but not of activated regulatory T cells (CD45RA−Foxp3high) was detected in CVID patients with splenomegaly, the non-infectious manifestation in this CVID cohort (43.7 %). Moreover, the frequency of peripheral blood follicular helper T cells (CD3+CD4+CXCR5+PD-1+ICOS+) was similar between the CVID and control groups. Upon in vitro TLR3 activation, a decreased frequency of CD8+ T cells secreting IFN-γ, IL-17a or IL-22 was detected in the CVID group compared to the control group. However, a TLR7/TLR8 agonist and staphylococcal enterotoxin B induced an increased Th22/Tc22 (IL-22+, IFN-γ−, IL-17a−) response in CVID patients. Both TLR2 and TLR7/8/CL097 activation induced an increased response of CD4+ T cells secreting three cytokines (IL-17a, IL-22 and TNF)in CVID patients, whereas CD8+ T cells were unresponsive to these stimuli.\ud \ud \ud Conclusion\ud The data show that despite the unresponsive profile of CD8+ T cells to TLR activation, CD4+ T cells and Tc22/Th22 cells are responsive, suggesting that activation of innate immunity by TLRs could be a strategy to stimulate CD4+ T cells in CVID.We are grateful to all individuals who participated in the study. This work\ud was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo\ud (2012/14110-0) and the Laboratório de Investigação Médica, Unidade 56 do\ud Hospital das Clínicas da Faculdade de Medicina de São Paulo. The funders had\ud no role in the study design, data collection and analysis, decision to publish or\ud manuscript preparation

    Maternal LAMP/p55gagHIV-1 DNA Immunization Induces In Utero Priming and a Long-Lasting Immune Response in Vaccinated Neonates

    Get PDF
    Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods

    Enhanced immunogenicity and protective efficacy in mice following a Zika DNA vaccine designed by modulation of membrane-anchoring regions and its association to adjuvants

    Get PDF
    Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies
    • …
    corecore