6 research outputs found

    The Helicobacter pylori cag Pathogenicity Island Protein CagN Is a Bacterial Membrane-Associated Protein That Is Processed at Its C Terminus

    No full text
    Helicobacter pylori infects nearly half the world's population and is associated with a spectrum of gastric maladies. Infections with cytotoxin-associated gene pathogenicity island (cag PAI)-containing strains are associated with an increased risk for gastric cancer. The cag PAI contains genes encoding a type IV secretion system (T4SS) and a delivered effector, CagA, that becomes tyrosine phosphorylated upon delivery into host cells and initiates changes in cell signaling. Although some cag PAI genes have been shown to be required for CagA delivery, a subset of which are homologues of T4SS genes from Agrobacterium tumefaciens, the majority have no known function or homologues. We have performed a detailed investigation of one such cag PAI protein, CagN, which is encoded by the gene HP0538. Our results show that CagN is not delivered into host cells and instead is associated with the bacterial membrane. We demonstrate that CagN is cleaved at its C terminus by a mechanism that is independent of other cag PAI proteins. Finally, we show that a ΔcagN mutant is not impaired in its ability to deliver CagA to gastric epithelial cells and initiate cell elongation

    Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection

    No full text
    During latent infection of humans with Mycobacterium tuberculosis, bacteria persist in the asymptomatic host within granulomas, organized collections of differentiated macrophages, and other immune cells. The mechanisms for persistence remain poorly understood, as is the metabolic and replicative state of the microbes within granulomas. We analyzed the gene expression profile of Mycobacterium marinum, the cause of fish and amphibian tuberculosis, during its persistence in granulomas. We identified genes expressed specifically when M. marinum persists within granulomas. These granuloma-activated genes were not activated in vitro in response to various conditions postulated to be operant in tuberculous granulomas, suggesting that their granuloma-specific activation was caused by complex conditions that could not be mimicked in vitro. In addition to the granuloma-activated genes, the bacteria resident in granulomas expressed a wide range of metabolic and synthetic genes that are expressed during logarithmic growth in laboratory medium. Our results suggest a dynamic host-pathogen interaction in the granuloma, where metabolically active bacteria are kept in check by the host immune system and where the products of granuloma-specific bacterial genes may thwart the host's attempt to completely eradicate the bacteria
    corecore