58 research outputs found
Living in the World of Manmade Chemicals: Lessons Learned from the Migrations and Collapses of Civilizations
Many of the world’s natural surface and groundwater resources are getting contaminated with an increasing number of manmade chemicals, which include farm and household insecticides, industrial pollutants, and pharmaceuticals. As the sizes of potable water bodies are decreasing steeply, it is warranted that we find economic ways to preserve, and purify the available water resources. In this presentation, a discussion on two of the naturally occurring and most widespread contaminants in the world and their human exposure, how one of these contaminants contributed possibly to a collapse of a thriving ancient civilization and the lessons one can learn from these, and the development of novel nano technologies in the purification of water resources that contain these contaminants
Recommended from our members
Reduction and Reoxidation of Soils During and After Uranium Bioremediation; Implications for Long Term Uraninite Stability and Bioremediation Scheme Implementation
The goal of this research was to study the reoxidation of biologically precipitated U(IV). Several experiments were performed and are summarized below. These experiments include: (1) a long-term (~200 days) U(VI) reduction experiment under low sulfate conditions in order to study in detail changes in iron phases and biomass and determine how they affect/buffer reoxidation; (2) a short term (~70 days) experiment where we tracked the uranium profile via XANES prior to reoxidation and during reoxidation in order to determine the U speciation; (3) a short term experiment where we compare the oxidation of U(IV) by oxygen and nitrate in the absence of FeS; and (4) a short term experiment where we compare the oxidation of U(IV) by oxygen and nitrate in the presence of FeS precipitates
Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium
The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit almost complete removal of Hg from the experimental solutions at relatively low bacterial concentrations. Synchrotron based X-ray spectroscopic studies of these samples indicate that the structure and the coordination environment of Hg surface complexes on bacterial cell walls change dramatically- with sulfhydryls as the dominant Hg-binding groups in the micromolar and submicromolar range, and carboxyls and phosphoryls dominating at high micromolar concentrations. Hg interactions change from a trigonal or T-shaped HgS{sub 3} complex to HgS or HgS{sub 2} type complexes as the Hg concentration increases in the submicromolar range. Although all bacterial species studied exhibited the same types of coordination environments for Hg, the relative concentrations of the complexes change as a function of Hg concentration
Potentially Massive and Global Non-Pyrogenic Production of Condensed Black Carbon through Biomass Oxidation
With the increased occurrences of wildfires worldwide, there has been an increase in scientific interest surrounding the chemistry of fire-derived black carbon (BC). Traditionally, wildfire research has assumed that condensed aromatic carbon (ConAC) is exclusively produced via combustion, and thus, ConAC is equated to BC. However, the lack of correlations between ConAC in soils or rivers and wildfire history suggests that ConAC may be produced non-pyrogenically. Here, we show quantitative evidence that this occurs during the oxidation of biomass with environmentally ubiquitous hydroxyl radicals. Pine wood boards exposed to iron nails and natural weather conditions for 12 years yielded a charcoal-like ConAC-rich material. ConAC was also produced during laboratory oxidations of pine, maple, and brown-rotted oak woods, as well as algae, corn root, and tree bark. Back-of-the-envelope calculations suggest that biomass oxidation could be producing massive non-pyrogenic ConAC fluxes to terrestrial and aquatic environments. These estimates (e.g., 163-182 Tg-ConAC/year to soils) are much higher than the estimated pyrogenic BC fluxes (e.g., 128 Tg-ConAC/year to soils) implying that environmental ConAC is primarily non-pyrogenic. This novel perspective suggests that wildfire research trajectories should shift to assessing non-pyrogenic ConAC sources and fluxes, developing new methods for quantifying true BC, and establishing a new view of ConAC as an intermediate species in the biogeochemical processing of biomass during soil humification, aquatic photochemistry, microbial degradation, or mineral-organic matter interactions. We also advise against using BC or pyrogenic carbon (pyC) terminologies for ConAC measured in environmental matrices, unless a pyrogenic source can be confidently assigned
Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies
Chalcogenide glasses have attracted considerable attention and found various applications due to their infrared transparency and other optical properties. The As-S-Se chalcogenide glass, with its large glass-formation domain and favorable nonlinear property, is a promising candidate system for tailoring important optical properties through modification of glass composition. In this context, a systematic study on ternary As-S-Se glass, chalcogen-rich versus well-studied stochiometric compositions, has been carried out using three different techniques: Raman spectroscopy, x-ray photoelectron spectroscopy, and extended x-ray absorption fine structure spectroscopy. These complementary techniques lead to a consistent understanding of the role of S/Se ratio in chalcogen-rich As-S-Se glasses, as compared to stochiometric composition, and to provide insight into the structural units (such as the mixed pyramidal units) and evidence for the existence of homopolar bonds (such as Se-Se, S-S, and Se-S), which are the possible structural origin of the high nonlinearity in these glasses
Recommended from our members
Selenium Fractionation and Cycling in the Intertidal Zone of the Carquinez Strait Quarterly Progress Report October 1995 through December 1995
Recommended from our members
The effect of natural organic matter on the adsorption of mercury to bacterial cells
We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria–Hg–FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg–bacteria and Hg–FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other
Recommended from our members
Stoichiometry of mercury-thiol complexes on bacterial cell envelopes
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L− 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells was determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy. Hg(II) was found to complex entirely with cell bound thiols at low Hg:biomass ratios. For Bacillus subtilis and Shewanella oneidensis MR-1 cells, the Hg—S stoichiometry changed from Hg—S₃ to Hg—S₂ and Hg—S (where ‘S’ represents a thiol site such as is present on cysteine) progressively as the Hg(II) loading increased on the cells. However, Geobacter sulfurreducens did not form Hg—S₃ complexes. Because the abundance of thiol was highest for Geobacter sulfurreducens (75 μM/g wet weight) followed by Shewanella oneidensis MR-1 (50 μM/g wet weight) and Bacillus subtilis (25 μM/g wet weight), the inability of Hg(II) to form Hg—S₃ complexes on Geobacter sulfurreducens suggests that the density and reactivity of S-amino acid containing cell membrane proteins on Geobacter sulfurreducens are different from those of Bacillus subtilis and Shewanella oneidensis MR-1. Upon saturation of the high affinity thiol sites at higher Hg:biomass ratios, Hg(II) was found to form a chelate with α-hydroxy carboxylate anion. The stoichiometry of cell envelope bound Hg-thiol complexes and the associated abundance of thiols on the cell envelopes provide important insights for understanding the differences in the rate and extent of uptake and redox transformations of Hg in the environment
Recommended from our members
In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal & Surface Complexation Using Soft X-Ray
Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions
Recommended from our members
Chemistry of Natural Organic Matter—The Next Step: Commentary on a Humic Substances Debate
Natural organic matter (NOM) is ubiquitous on the Earth surface and influences every biogeochemical reaction wherever it is present, and its impact on reactions varies with its abundance, structure, and chemistry. Because of decades of field and laboratory studies conducted on NOM in different environments, we are moving away from treating it as a black box to developing molecular structure–based approaches in investigations of soil, sediment, and aquatic systems and are beginning to make major advances in the detailed understanding of the molecular and structural characteristics of NOM, which in turn are helping in deciphering the biochemical processes involved in its evolution in the environment. Yet, many questions remain: How does NOM exist in different soil and aquatic environments? How should we obtain NOM from a sample, and does the isolated NOM represent the NOM in a sample? Do the geochemical reactions explored with extracted NOM represent the reality? How can we study NOM in situ? Here I present a synopsis of critical perspectives on the state of NOM research and a commentary on the reviews and debate presented in this special section on the NOM nomenclature, extraction procedures, and studies involving NOM in different environmental processes
- …