93 research outputs found

    Transfer measurements for the Ti plus Ni systems at near barrier energies

    Get PDF
    Large enhancements have been observed in the sub-barrier fusion cross sections for Ti + Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2(+) and 3(-) states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for Ti-46,Ti-48 + Ni-64 systems. The present paper gives the results of these studies

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ≥0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Clusters of galaxies: setting the stage

    Get PDF
    Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun. They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. In the current bottom-up scenario for the formation of cosmic structure, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ~50 % of this diffuse component has temperature ~0.01-1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 2; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    The geometry of extremal elements in a Lie algebra

    No full text
    Let L be a simple finite-dimensional Lie algebra over an algebraically closed field of characteristic distinct from 2 and from 3. Then L contains an extremal element, that is, an element x such that [x, [x, L]] is contained in the linear span of x in L. Suppose that L contains no sandwich, that is, no element x such that [x, [x, L]] = 0. Then, up to very few exceptions in characteristic 5, the Lie algebra L is generated by extremal elements and we can construct a building of irreducible and spherical type on the set of extremal elements of L. Therefore, by Tits’ classification of such buildings, L is determined by a known shadow space of a building. This gives a geometric alternative to the classical classification of finite-dimensional simple Lie algebras over the complex numbers and of classical finite-dimensional simple modular Lie algebras over algebraically closed fields of characteristic = 5. This paper surveys developments pertaining to this kind of approach to classical Lie algebras
    • …
    corecore