46 research outputs found

    Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response

    Get PDF
    The effects of gut microbiota on the central nervous system, along its possible role in mental disorders, have received increasing attention. Here we investigated differences in fecal microbiota between 28 patients with first-episode psychosis (FEP) and 16 healthy matched controls and explored whether such differences were associated with response after up to 12 months of treatment. Numbers of Lactobacillus group bacteria were elevated in FEP-patients and significantly correlated with severity along different symptom domains. A subgroup of FEP patients with the strongest microbiota differences also showed poorer response after up to 12 months of treatment. The present findings support the involvement of microbiota alterations in psychotic illness and may provide the basis for exploring the benefit of their modulation on treatment response and remission. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    DNA Methylation Signatures within the Human Brain

    Get PDF
    DNA methylation is a heritable modification of genomic DNA central to development, imprinting, transcriptional regulation, chromatin structure, and overall genomic stability. Aberrant DNA methylation of individual genes is a hallmark of cancer and has been shown to play an important role in neurological disorders such as Rett syndrome. Here, we asked whether normal DNA methylation might distinguish individual brain regions. We determined the quantitative DNA methylation levels of 1,505 CpG sites representing 807 genes with diverse functions, including proliferation and differentiation, previously shown to be implicated in human cancer. We initially analyzed 76 brain samples representing cerebral cortex (n=35), cerebellum (n=34), and pons (n=7), along with liver samples (n=3) from 43 individuals. Unsupervised hierarchical analysis showed clustering of 33 of 35 cerebra distinct from the clustering of 33 of 34 cerebella, 7 of 7 pons, and all 3 livers. By use of comparative marker selection and permutation testing, 156 loci representing 118 genes showed statistically significant differences—a ⩾17% absolute change in DNA methylation (P<.004)—among brain regions. These results were validated for all six genes tested in a replicate set of 57 samples. Our data suggest that DNA methylation signatures distinguish brain regions and may help account for region-specific functional specialization

    Establishing the baseline level of repetitive element expression in the human cortex

    Get PDF
    Background: Although nearly half of the human genome is comprised of repetitive sequences, the expression profile of these elements remains largely uncharacterized. Recently developed high throughput sequencing technologies provide us with a powerful new set of tools to study repeat elements. Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute. Results: We found a significant amount of reads from the human frontal cortex originate from repeat elements. We also noticed that Alu elements were expressed at levels higher than expected by random or background transcription. In contrast, L1 elements were expressed at lower than expected amounts. Conclusions: Repetitive elements are expressed abundantly in the human brain. This expression pattern appears to be element specific and can not be explained by random or background transcription. These results demonstrate that our knowledge about repetitive elements is far from complete. Further characterization is required to determine the mechanism, the control, and the effects of repeat element expression

    Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    Get PDF
    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08

    Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown similarities between schizophrenia and bipolar disorder in phenotypes and in genotypes, and those studies have contributed to an ongoing re-evaluation of the traditional dichotomy between schizophrenia and bipolar disorder. Bipolar disorder with psychotic features may be closely related to schizophrenia and therefore, psychosis may be an alternative phenotype compared to the traditional diagnosis categories.</p> <p>Methods</p> <p>We performed a cross-study analysis of 7 gene expression microarrays that include both psychosis and non-psychosis subjects. These studies include over 400 microarray samples (163 individual subjects) on 3 different Affymetrix microarray platforms.</p> <p>Results</p> <p>We found that 110 transcripts are differentially regulated (p < 0.001) in psychosis after adjusting for confounding variables with a multiple regression model. Using a quantitative PCR, we validated a set of genes such as up-regulated metallothioneins (MT1E, MT1F, MT1H, MT1K, MT1X, MT2A and MT3) and down-regulated neuropeptides (SST, TAC1 and NPY) in the dorsolateral prefrontal cortex of psychosis patients.</p> <p>Conclusion</p> <p>This study demonstrates the advantages of cross-study analysis in detecting consensus changes in gene expression across multiple microarray studies. Differential gene expression between individuals with and without psychosis suggests that psychosis may be a useful phenotypic variable to complement the traditional diagnosis categories.</p

    Homologues of the homeotic and segment polarity genes are involved in the postnatal development of the cat visual system

    No full text
    This thesis investigates the possible involvement of the homologues of the drosophila developmental genes in the postnatal development of the cat visual system. Initially, the cDNA's of homeotic genes PBX1, PBX2 and the homologues of the segment polarity genes BMP4, BMP6, BMP type II receptor, Wnt-1, and FrzB were partially cloned in the cat. We report that the mRNA expression of these genes is developmentally regulated in the postnatal cat visual cortex. To further substantiate our hypothesis that the homologues of the drosophila developmental genes contribute to the postnatal development of the cat visual cortex, the expression of the beta-catenin protein was characterized in the visual system of normally developing and deprived kittens. The beta-catenin protein, which is a downstream effector of the Wnt-1 signalling pathway, is capable of functioning both as a transcription factor and a cell adhesion molecule. Consistent with its characterized role as a transcription factor, the beta-catenin protein becomes nuclearized in L G N neurons at the end of the period for thalamocortical plasticity. Hence, one of the putative functions of the beta-catenin protein in postnatal visual development is proposed to be ending thalamocortical plasticity. The role of the beta-catenin protein in cellular adhesion is to anchor the cadherin cell adhesion molecules to the actin cytoskeleton. Interestingly, the beta-catenin/cadherin cell adhesion system in neurons is located at synapses. Fittingly, both the cadherin and the beta-catenin proteins are expressed in the neuropil of the geniculate and the visual cortex and this expression is prominent in layer IV of the visual cortex. In addition, the temporal expression of these proteins correlates with the critical period. Furthermore, neuropil expression of betacatenin and cadherin proteins is altered in the L G N in response to monocular deprivation. This finding suggest a role for these molecules in the competition occurring between X - and Y - cell arbours. In summary, beta-catenin appears to act as a multi-functional protein and contribute to different facets of postnatal visual development in the cat. These findings endorse our original hypothesis that the homologues of the drosophila developmental genes are involved in the development of the cat visual system.Medicine, Faculty ofGraduat

    Association of DNA Methylation with Acute Mania and Inflammatory Markers.

    No full text
    In order to determine whether epigenetic changes specific to the manic mood state can be detected in peripheral blood samples we assayed DNA methylation levels genome-wide in serum samples obtained from 20 patients hospitalized for mania and 20 unaffected controls using the Illumina 450K methylation arrays. We identified a methylation locus in the CYP11A1 gene, which is regulated by corticotropin, that is hypo-methylated in individuals hospitalized for mania compared with unaffected controls. DNA methylation levels at this locus appear to be state related as levels in follow-up samples collected from mania patients six months after hospitalization were similar to those observed in controls. In addition, we found that methylation levels at the CYP11A1 locus were significantly correlated with three inflammatory markers in serum in acute mania cases but not in unaffected controls. We conclude that mania is associated with alterations in levels of DNA methylation and inflammatory markers. Since epigenetic markers are potentially malleable, a better understanding of the role of epigenetics may lead to new methods for the prevention and treatment of mood disorders

    Transcription of human endogenous retroviruses in human brain by RNA-seq analysis.

    No full text
    BackgroundHuman endogenous retroviruses (HERV) comprise 8% of the human genome and can be classified into at least 31 families. Increased levels of transcripts from the W and H families of HERV have been observed in association with human diseases, such as multiple sclerosis and schizophrenia. Although HERV transcripts have been detected in many tissues and cell-types based on microarray and PCR studies, the extent of HERV expression in different cell-types and diseases state has been less comprehensively studied.ResultsWe examined overall transcription of HERV, and particularly of HERV-W and HERV-H elements in human postmortem brain samples obtained from individuals with psychiatric diagnoses (n = 111) and healthy controls (n = 51) by analyzing publicly available RNA sequencing datasets. Sequence reads were aligned to prototypical sequences representing HERV, downloaded from Repbase. We reported a consistent expression (0.1~0.2% of mappable reads) of different HERV families across three regions of human brains. Spearman correlations revealed highly correlated expression levels between three brain regionsacross 475 consensus sequences. By mapping sequences that aligned to the consensus sequences of HERV-W and HERV-H families to individual loci on chromosome 7, more than 60 loci from each family were identified, part of which are being transcribed. The ERVWE1, locus located at chr7q21.2, exhibited high levels of transcription across the three datasets. Notably, we demonstrated a trend of increased expression of overall HERV, as well as HERV-W family in samples from both schizophrenia and bipolar disorder patients.ConclusionsThe current analyses indicate that RNA sequencing is a useful approach for investigating global expression of repetitive elements, such as HERV, in the human genome. HERV-W/H with the tendency of transcription up-regulation in patients suggests potential implication of HERV-W/H in psychiatric diseases
    corecore