451 research outputs found

    Post-translocational folding of secretory proteins in Gram-positive bacteria

    Get PDF
    AbstractThe transport of proteins from their site of synthesis in the cytoplasm to their functional location is an essential characteristic of all living cells. In Gram-positive bacteria the majority of proteins that are translocated across the cytoplasmic membrane are delivered to the membrane–cell wall interface in an essentially unfolded form. They must then be folded into their native configuration in an environment that is dominated by a high density of immobilised negative charge—in essence an ion exchange resin. It is essential to the viability of the cell that these proteins do not block the translocation machinery in the membrane, form illegitimate interactions with the cell wall or, through intermolecular interactions, form insoluble aggregates. Native Gram-positive proteins therefore have intrinsic folding characteristics that facilitate their rapid folding, and this is assisted by a variety of folding factors, including enzymes, peptides and metal ions. Despite these intrinsic and extrinsic factors, secretory proteins do misfold, particularly if the cell is subjected to certain types of stress. Consequently, Gram-positive bacteria such as Bacillus subtilis encode membrane- and cell wall-associated proteases that act as a quality control machine, clearing misfolded or otherwise aberrant proteins from the translocase and the cell wall

    The Unique Determination of Neuronal Currents in the Brain via Magnetoencephalography

    Full text link
    The problem of determining the neuronal current inside the brain from measurements of the induced magnetic field outside the head is discussed under the assumption that the space occupied by the brain is approximately spherical. By inverting the Geselowitz equation, the part of the current which can be reconstructed from the measurements is precisely determined. This actually consists of only certain moments of one of the two functions specifying the tangential part of the current. The other function specifying the tangential part of the current as well as the radial part of the current are completely arbitrary. However, it is also shown that with the assumption of energy minimization, the current can be reconstructed uniquely. A numerical implementation of this unique reconstruction is also presented

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean

    Get PDF
    Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean

    Practices Surrounding Event Photos

    Get PDF
    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called ‘event photos’- photos about and taken during different social events such as weddings picnics, and music concert visits among others. We studied people’s practices related to event photos through in-depth interviews, guided home visits and naturalistic observations. Our results show four major themes describing practices surrounding event photos: 1) representing events, 2) significant moments, 3) situated activities through photos, and 4) collectivism and roles of participants

    SaaS Platform for Time Series Data Handling

    Get PDF
    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a “Software as a Service” model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data

    Examining the Effects of One- and Three-Dimensional Spatial Filtering Analyses in Magnetoencephalography

    Get PDF
    Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used

    Simulating the carbon balance of a temperate larch forest under various meteorological conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in the timing of phenological events may cause the annual carbon budget of deciduous forests to change. Therefore, one should take such events into account when evaluating the effects of global warming on deciduous forests. In this article, we report on the results of numerical experiments done with a model that includes a phenological module simulating the timing of bud burst and other phenological events and estimating maximum leaf area index.</p> <p>Results</p> <p>This study suggests that the negative effects of warming on tree productivity (net primary production) outweigh the positive effects of a prolonged growing season. An increase in air temperature by 3°C (5°C) reduces cumulative net primary production by 21.3% (34.2%). Similarly, cumulative net ecosystem production (the difference between cumulative net primary production and heterotrophic respiration) decreases by 43.5% (64.5%) when temperatures are increased by 3°C (5°C). However, the positive effects of CO<sub>2 </sub>enrichment (2 × CO<sub>2</sub>) outweigh the negative effects of warming (<5°C).</p> <p>Conclusion</p> <p>Although the model was calibrated and validated for a specific forest ecosystem, the implications of the study may be extrapolated to deciduous forests in cool-temperate zones. These forests share common features, and it can be conjectured that carbon stocks would increase in such forests in the face of doubled CO<sub>2 </sub>and increased temperatures as long as the increase in temperature does not exceed 5°C.</p

    Delayed BCG immunization does not alter antibody responses to EPI vaccines in HIV-exposed and -unexposed South African infants.

    Get PDF
    BACKGROUND: Bacille Calmette-Guérin (BCG) is routinely given at birth in tuberculosis-endemic settings due to its protective effect against disseminated tuberculosis in infants. BCG is however contraindicated in HIV-infected infants. We investigated whether delaying BCG vaccination to 14 weeks of age affected vaccine-induced antibody responses to Haemophilus influenzae type b (Hib)-conjugate, pertussis, tetanus and Hepatitis B (HBV) vaccines, in HIV-exposed uninfected (HEU) and -unexposed uninfected (HUU) infants. METHODS: Infants were randomized to receive BCG at birth or at 14 weeks of age. Blood was taken at 14, 24, and 52 weeks of age and analyzed for Hib, pertussis, tetanus and HBV specific antibodies. RESULTS: BCG was given either at birth (106 infants, 51 HEU) or at 14 weeks of age (74 infants, 50 HEU). The timing of BCG vaccination did not influence the antibody response to any antigen studied. However, in a non-randomized comparison, HEU infants had higher Hib antibody concentrations at weeks 14 and 24 (p=0.001 and <0.001, respectively) and pertussis at week 24 (p=0.003). Conversely, HEU infants had lower antibody concentrations to HBV at 14 and 52 weeks (p=0.032 and p=0.031) with no differences in tetanus titres. CONCLUSIONS: HIV exposure, but not the timing of BCG vaccination, was associated with antibody concentrations to Hib, pertussis, HBV and tetanus primary immunization. CLINICAL TRIAL REGISTRATION: DOH-27-1106-1520

    An Introduction to EEG Source Analysis with an illustration of a study on Error-Related Potentials

    No full text
    International audienceOver the last twenty years blind source separation (BSS) has become a fundamental signal processing tool in the study of human electroencephalography (EEG), other biological data, as well as in many other signal processing domains such as speech, images, geophysics and wireless communication (Comon and Jutten, 2010). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG, increasing the sensitivity and specificity of the signal received from the electrodes on the scalp. This chapter begins with a short review of brain volume conduction theory, demonstrating that BSS modeling is grounded on current physiological knowledge. We then illustrate a general BSS scheme requiring the estimation of second-order statistics (SOS) only. A simple and efficient implementation based on the approximate joint diagonalization of covariance matrices (AJDC) is described. The method operates in the same way in the time or frequency domain (or both at the same time) and is capable of modeling explicitly physiological and experimental source of variations with remarkable flexibility. Finally, we provide a specific example illustrating the analysis of a new experimental study on error-related potentials
    corecore