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Abstract. The paper is devoted to the description of MathBrain, a cloud-based resource,
which works as a “Software as a Service” model. It is designed to maximize the effi-
ciency of the current technology and to provide a tool for time series data handling. The
resource provides access to the following analysis methods: direct and inverse Fourier
transforms, Principal component analysis and Independent component analysis decom-
positions, quantitative analysis, magnetoencephalography inverse problem solution in a
single dipole model based on multichannel spectral data.

1 Introduction

Cloud platforms become more and more popular for different fields. This fact is determined by sophis-
ticated requirements toward computing machines which scientists use to analyze their data. Usually,
experimental data demand big capacity of hardware to perform all the desired computations. The
cloud technologies can help in this task due to their ability to provide scalable capacity, operating
system independency, and simple access through the Internet [1]. The scientist can use them as much
as he needs and when he needs. This concept makes the analysis easier and more accessible [2].

Our cloud resource MathBrain provides users with tools for time series analysis. The most of
methods are dedicated to magnetic- and electro encephalography (MEG, EEG) analysis which con-
tains big amounts of data to compute. The methods of brain analysis are noninvasive, and the process
looks like a registration of electro-magnetic activity. During the procedure, the magnetic encephalo-
graph registers a magnetic filed for several minutes, in hundreds of channels. Thus, as a result of
these experiments, the specialists get big amounts of data with complex structure. We have chosen
the Software as a Service (SaaS) model to give users a complete set of tools to analyze their data.

2 Architecture and technical realization

The purpose of this work is the description of a tool which can handle big amounts of encephalogra-
phy data. This tool should meet the following technical requirements: it should work without local
installation; no additional licensing; only opensource libraries/technologies; compatibility with .mat
files; it should allow to perform big calculations simultaneously for several users; operating system
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independency. To meet these requirements, we have chosen the SaaS model of cloud resource. The
main benefit here is the resources scalability, i.e. tasks can be balanced between nodes and the users
would not be affected by performance issues. At the same time, the cloud model does not need instal-
lation process expertise and licensing, and, also, we receive operating system independent resource.

The architecture of this resource contains the layer of abstraction which helps to share hardware
between containers (tasks) and can be used for balancing the load. As a virtualization platform, we are
using the Docker [3] technology which allows to create containers and to balance them between nodes
depending on CPU and RAM load. The architecture of MathBrain resource contains three nodes. One
of them is a Manager host, the others are nodes (Workers) for user’s tasks execution. The Manager
host contains repository of images, these images can be implemented to container and Portainer –
user web interface. MathBrain, as a web resource, contains a web server and a database. These
functions are also being placed in different containers on the Manager node. The cloud flexibility
and scalability can be affected if all physical resources are asked simultaneously. In such a situation,
a supplementary public cloud capacity can be used to expand the local hardware resources. There
are three main vendors of public cloud who foster work with containers: Google Cloud Platform [4],
Amazon AWS and Microsoft Azure [5]. All of them have their own services which help to build hybrid
solutions (mix of the on-premises and public resources usage). Without connecting to public cloud
resources Docker Swarm manager will put tasks in a queue till local hardware capacity is available.
The engine of the resource which handle encephalography data is written in Python language. All the
corresponding scripts were packed in an API container and can be used according to request.

Figure 1. MathBrain architecture

3 Functionality

The MathBrain resource provides several analysis methods to the users: direct and inverse Fourier
transforms, Principal Component Analysis (PCA) [6] and Independent Component Analysis (ICA) [7]
decompositions, quantitative analysis, inverse MEG problem solution in a single dipole model based
on multichannel spectrum data [8]. Direct and inverse Fourier transforms are the basic methods for the
analysis of MEG time-series [9]. Direct Fourier transform can be calculated on a selected frequency
band as well as on a whole frequency range of input data. The obtained spectrum can be used in
further analysis, e.g. for inverse problem solution. Inverse Fourier transform is used for restoration
of time-series from spectrum. It can be calculated on selected time-frame or on the whole length of
the original time-series. Also at this stage one can select frequency band for restoration. Restored
time-series can be used in further PCA and ICA analysis. The PCA and ICA are multivariate signal
processing techniques widely used in neuroimaging to separate (as much as possible) independent
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The MathBrain resource provides several analysis methods to the users: direct and inverse Fourier
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on multichannel spectrum data [8]. Direct and inverse Fourier transforms are the basic methods for the
analysis of MEG time-series [9]. Direct Fourier transform can be calculated on a selected frequency
band as well as on a whole frequency range of input data. The obtained spectrum can be used in
further analysis, e.g. for inverse problem solution. Inverse Fourier transform is used for restoration
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the original time-series. Also at this stage one can select frequency band for restoration. Restored
time-series can be used in further PCA and ICA analysis. The PCA and ICA are multivariate signal
processing techniques widely used in neuroimaging to separate (as much as possible) independent

subcomponents from linearly mixed signals. In MathBrain service they are applied to multi-channel
MEG time-series in a “temporal” variant, i.e. independence is intended in the domain of temporal
observations whereas the number of channels defines the original dimensionality of the multivariate
data set. The quantitative analysis is a direct Fourier transform of MEG time-series, calculated in
moving time window. The length and shift of this time window are defined by user. As the result of
this analysis, one-dimensional power spectrogram (sum of powers in all channels in corresponding
frequency bin) is produced, allowing one to evaluate spectral changes in signal during the time of
measurement. The inverse problem solution in MEG addresses the finding of the magnetic field
sources from the known values of magnetic induction at some sensors on the head surface. To solve
this problem, the following function depending on the magnetic field sources is minimized

f =
n∑

i=1

ωi(Bi − B0
i )2 → min .

B0
i are the values of the magnetic induction measured by the sensors, Bi are the relevant values from

forward field modeling, ωi are the sensors’ weights, and n is the number of sensors. In terms of
spectral-based approach B0

i are the values of restored MEG channels at selected frequency at given
moment of time. Provided with the initial guess, the dipole location is determined by standard mathe-
matical methods designed for searching the local minimum of the function of several variables. Since
in this case the information on the derivatives of the function being minimized is difficult to obtain, the
zero-order methods were selected. Namely, the Nelder-Mead simplex method is used for minimiza-
tion. As a forward field model we use equivalent current dipole model in conducting sphere [10]. The
results of this procedure are dipole coordinates and direction. These results are shown superimposed
onto subject’s MRI.

The example of the MathBrain resource work is illustrated in Figure 2 and 3. In this example,
the inverse problem is solved at the selected frequency. User chooses a spectrum and MRI. First, the
scientist gets a one-channel chart where he can choose an interesting frequency and then use it for
calculations. When the necessary frequency is identified, the user receives a multichannel chart with
details. As a result, user sees the source of the signal at the MRI.

Figure 2. “Inverse MEG problem” method input data screen
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Figure 3. Example of the “Inverse MEG problem” method work

4 Conclusion
A cloud based solution for time series data handling was created. It meets all technical pre-requisites.
The resource provides an access to widely-used analysis techniques. Plans for the further develop-
ment: to add magnetic field map visualization to ICA, PCA and inverse problem solution; to extend
inverse problem solution to two-dipole model; to develop more complex analysis workflows, e.g. in-
verse problem solution, based on ICA decomposition of spectral data; to create the semi-automatic
MEG data conversion program.
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