40 research outputs found

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    Detection of Escherichia coli, Salmonella enterica and shigella Dysenteriae by analysis of 23s ribosomal DNA gene

    Get PDF
    Background: Ribosomal DNA (rDNA) genes contain signature structures which are unique for groups of organisms. Considering their great number in cells and their protected areas, they render ideal targets for specific nucleic acid probes. The present study aimed to investigate the capability of some specific regions of 23S rDNA gene as a DNA target for differentiation and screening of Escherichia coli, Salmonella enterica, and Shigella dysenteriae. Methods: Bacterial reference strains used in this study were E. coli, S. enterica and Sh. dysenteriae that were provided by the centers for microbial culture collection (CMCC) at Pasture Institute of Iran. DNA extraction was performed by boiling method. Alignment of the 23S rDNA sequences of bacterial species was performed by using AlignX (a component of Vector NTI Advance 11.0) and areas displaying sequence divergence among species were used for designing universal primers and individual bacteria specific probe. Findings: The universal polymerase chain reaction (PCR) products of each bacterial species showed bands of approximately 880 bp to be being equivalent to the fragment size of 23S rDNA gene. Different size bands of 23S rDNA probes were produced and included 228 bp for E. coli, 444 bp for S. enterica, and 776 bp for Sh. dysenteriae. Conclusion: Comparative sequence analysis of variable and specific regions of 23S rDNA genes among the studied bacterial species showed that we were able to amplify specific target among universal region for the detection of many enteric pathogenic bacteria
    corecore