85 research outputs found

    Integrative study of a new cold-seep mussel (Mollusca: Bivalvia) associated with chemosynthetic symbionts in the Marmara Sea

    Get PDF
    Recently, small Idas-like mussels have been discovered living on carbonate crusts associated with cold-seeps in the Marmara Sea. These mussels, here referred to as Idas-like nov. sp., differ morphologically and genetically from another species identified as Idas aff. modiolaeformis, living in the same type of ecosystem in the Nile Deep-Sea Fan (eastern Mediterranean Sea). A phylogenetic analysis confirms the distinction between the two species, which belong to highly divergent lineages. Carbon stable isotope values, as well as the detection of thiotroph-related bacteria in the gill tissue, support the presence of a symbiotic, thiotroph-derived nutrition. In contrast, Idas aff. modiolaeformis displays six different types of symbionts. Finally our size-frequency data suggest that the recruitment is continuous in the examined area. The present study extends the documented distribution of symbiont-bearing mussels to the Marmara Sea, and contributes to the characterisation of biological communities in this recently explored area

    A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 56 (2009): 2065-2074, doi:10.1016/j.dsr.2009.06.008.Numerous attempts have been made over the last thirty years to estimate fluid flow rates at hydrothermal vents, either at the exit of black smoker chimneys or within diffuse flow areas. In this study, we combine two methods to accurately estimate fluid flow velocities at diffuse flow areas. While the first method uses a hot film anemometer that performs high frequency measurements, the second allows a relatively rapid assessment of fluid flow velocity through video imagery and provides in situ data to calibrate the sensor. Measurements of flow velocities on hydrothermal diffuse flow areas were obtained on the Mid-Atlantic Ridge (MAR). They range from 1.1 to 4.9 mm/sec., at the substratum level, in low temperature (4.5 to 16.4°C) diffuse flow areas from the Tour Eiffel sulfide edifice. A strong correlation was observed between fluid flow velocities and temperature, supporting the possible use of temperature as a proxy to estimate flow rates in diffuse flow areas where such a simple linear flow/temperature relation is shown to dominate.The first part of this research was sponsored by a NOAA/NURP grant award #NA96RU0221 and NSF grant OCE-9901563 to MKT and JS. JS was also supported by a FCAR (Quebec) post-doctoral fellowship. The last part of the project was supported through the ANR DEEP OASES (ANR06 BDV005)

    Monitoring ecological dynamics on complex hydrothermal structures: A novel photogrammetry approach reveals fine‐scale variability of vent assemblages

    Get PDF
    We set out to characterize the fine-scale processes acting on interannual dynamics of deep-sea vent fauna by using a novel approach involving a 5-yr time series of 3D photogrammetry models acquired at the Eiffel Tower sulfide edifice (Lucky Strike vent field, Mid-Atlantic Ridge). Consistently, with the overall stability of the vent edifice, total mussel cover did not undergo drastic changes, suggesting that they have been at a climax stage for at least 25 yr based on previous data. Successional patterns showed consistency over time, illustrating the dynamic equilibrium of the ecological system. In contrast, microbial mats significantly declined, possibly due to magmatic events. The remaining environmental variability consisted of decimeter-scale displacement of vent outflows, resulting from their opening or closure or from the progressive accretion of sulfide material. As a result, vent mussels showed submeter variability in the immediate vicinity of vent exits, possibly by repositioning in response to that fine-scale regime of change. As former studies were not able to quantify processes at submeter scales in complex settings, this pioneering work demonstrates the potential of 3D photogrammetry models for conducting long-term monitoring in the deep sea. We observed that the ability of mussels to displace may enable them to cope with changing local conditions in a stable system. However, the long-term stability of mussel assemblages questions their capacity to withstand large-scale disturbances and may imply a low resilience of these “climax” communities. This suggests that they may be particularly vulnerable to the negative effects of mining activities in hydrothermal ecosystems

    Convolutional neural networks for hydrothermal vents substratum classification: An introspective study

    Get PDF
    The increasing availability of seabed images has created new opportunities and challenges for monitoring and better understanding the spatial distribution of fauna and substrata. To date, however, deep-sea substratum classification relies mostly on visual interpretation, which is costly, time-consuming, and prone to human bias or error. Motivated by the success of convolutional neural networks in learning semantically rich representations directly from images, this work investigates the application of state-of-the-art network architectures, originally employed in the classification of non-seabed images, for the task of hydrothermal vent substrata image classification. In assessing their potential, we conduct a study on the generalization, complementarity and human interpretability aspects of those architectures. Specifically, we independently trained deep learning models with the selected architectures using images obtained from three distinct sites within the Lucky-Strike vent field and assessed the models' performances on-site as well as off-site. To investigate complementarity, we evaluated a classification decision committee (CDC) built as an ensemble of networks in which individual predictions were fused through a majority voting scheme. The experimental results demonstrated the suitability of the deep learning models for deep-sea substratum classification, attaining accuracies reaching up to 80% in terms of F1-score. Finally, by further investigating the classification uncertainty computed from the set of individual predictions of the CDC, we describe a semiautomatic framework for human annotation, which prescribes visual inspection of only the images with high uncertainty. Overall, the results demonstrated that high accuracy values of over 90% F1-score can be obtained with the framework, with a small amount of human intervention

    DeepIso - A global open database of stable isotope ratios and elemental contents for deep-sea ecosystems.

    Full text link
    Stable isotopes have been instrumental to many key-findings about deep-sea ecosystem functioning, particularly in chemosynthesis-based habitats (hydrothermal vents, cold seeps). However, constraining sampling logistics commonly limit the scope, extent, and therefore insights drawn from isotope-based deep-sea studies. Overall, much is left to discover about factors globally influencing food web structure in deep-sea ecosystems. In this context, it is crucial that all generated data are easily discoverable, available and reusable. DeepIso is a collaborative effort to produce a global compilation of stable isotope ratios and elemental contents in organisms from deep-sea ecosystems. In doing so, it aims to provide the deep-sea community with an open data analysis tool that can be used in the context of future ecological research, and to help deep-sea researchers to use stable isotope markers at their full efficiency. The database, accessible under CC-BY licence at https://doi.org/10.17882/76595, currently contains 18677 fully documented measurements. Archived parameters include δ13C (n = 4587), δ15N (n = 4388), δ34S (n = 951), %C (n = 2740), %N (n = 2741), %S (n = 752) and C/N ratio (n = 2518). Those measurements pertain to 4378 distinct samples belonging to 493 taxa, plus sediments, suspended particulate organic matter, plankton and detritus. Samples were taken between 1989 and 2018 in multiple environments (hydrothermal vents, cold seeps, cold water coral reefs, and other benthic or pelagic environments) and at depths ranging up to 5209 meters. To maximise the scope of the project, we are looking to integrate more data, either underlying published articles, from grey literature, or even unpublished. We’ll be happy to assist in data formatting and publication. If you are willing to contribute, or simply if you have feedback about the database, please get in touch via [email protected]

    Building up DeepIso - A global open database of stable isotope ratios and elemental contents for deep-sea ecosystems.

    Full text link
    Stable isotopes have been instrumental to many key-findings about deep-sea ecosystem functioning, particularly in chemosynthesis-based habitats (hydrothermal vents, cold seeps). However, constraining sampling logistics commonly limit the scope, extent, and therefore insights drawn from isotope-based deep-sea studies. Overall, much is left to discover about factors globally influencing food web structure in deep-sea ecosystems. In this context, it is crucial that all generated data are easily discoverable, available, and reusable. DeepIso is a collaborative effort to produce a global compilation of stable isotope ratios and elemental contents in organisms from deep-sea ecosystems. In doing so, it aims to provide the deep-sea community with an open data analysis tool that can be used in the context of future ecological research, and to help deep-sea researchers to use stable isotope markers at their full efficiency. The database, accessible under CC-BY licence at https://doi.org/10.17882/76595, currently contains 18677 fully documented measurements. Archived parameters include δ13C (n = 4587), δ15N (n = 4388), δ34S (n = 951), %C (n = 2740), %N (n = 2741), %S (n = 752) and C/N ratio (n = 2518). Those measurements pertain to 4378 distinct samples belonging to 493 taxa, plus sediments, suspended particulate organic matter, plankton and detritus. Samples were taken between 1989 and 2018 in multiple environments (hydrothermal vents, cold seeps, cold water coral reefs, and other benthic or pelagic environments) and at depths ranging up to 5209 meters. To maximise the scope of the project, we are looking to integrate more data, either underlying published articles, from grey literature, or even unpublished. We’ll be happy to assist in data formatting and publication. If you are willing to contribute, or simply if you have feedback about the database, please get in touch via [email protected]

    Characteristics of meiofauna in extreme marine ecosystems: a review

    Get PDF
    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    corecore