47 research outputs found

    Simulator evaluation of a remotely piloted vehicle lateral landing task using a visual display

    Get PDF
    A simulator evaluation of a remotely piloted research vehicle was conducted at NASA Ames Research Center's Dryden Flight Research Facility to determine the utility of a visual display when studying the influence of changes in the lateral stick gearing gains during landing approaches. The test vehicle used in this study was a highly maneuverable aircraft technology (HiMAT) aircraft, which is a 0.44 scale version of an envisioned small, single seat fighter airplane. Handling qualities ratings and comments obtained from pilots using a simulated visual display of a runway scene and a simulated instrument landing system (ILS) display were compared with the results of actual flight tests. The visual display was found to provide an adequate representation of the test vehicle in a visual landing approach, and it improved the roll response cues provided to the pilot. The handling qualities ratings and comments for flight and simulation visual landing approaches correlated well. The ILS simulation results showed reduced correlation compared with the flight results for ILS approaches. Handling qualities criteria for remotely piloted research vehicles are also discussed in this paper

    Simulation studies of alternate longitudinal control systems for the space shuttle orbiter in the landing regime

    Get PDF
    Simulations of the space shuttle orbiter in the landing task were conducted by the NASA Ames-Dryden Flight Research Facility using the Ames Research Center vertical motion simulator (VMS) and the total in-flight simulator (TIFS) variable-stability aircraft. Several new control systems designed to improve the orbiter longitudinal response characteristics were investigated. These systems improved the flightpath response by increasing the amount of pitch-rate overshoot. Reduction in the overall time delay was also investigated. During these evaluations, different preferences were noted for the baseline or the new systems depending on the pilot background. The trained astronauts were quite proficient with the baseline system and found the new systems to be less desirable than the baseline. On the other hand, the pilots without extensive flight training with the orbiter had a strong preference for the new systems. This paper presents the results of the VMS and TIFS simulations. A hypothesis is presented regarding the control strategies of the two pilot groups and how this influenced their control systems preferences. Interpretations of these control strategies are made in terms of open-loop aircraft response characteristics as well as pilot-vehicle closed-loop characteristics

    Application of frequency domain handling qualities criteria to the longitudinal landing task

    Get PDF
    Under NASA sponsorship, an in-flight simulation of the longitudinal handling qualities of several configurations for the approach and landing tasks was performed on the USAF/AFWAL Total In-Flight Simulator by the Calspan Corporation. The basic configuration was a generic transport airplane with static instability. The control laws included proportional plus integral gain loops to produce pitch-rate and angle-of-attack feedback loops. The evaluation task was a conventional visual approach to a flared touchdown at a designated spot on the runway with a lateral offset. The general conclusions were that the existing criteria are based on pitch-attitude response and that these characteristics do not adequately discriminate between the good and bad configurations of this study. This paper describes the work that has been done to further develop frequency-based criteria in an effort to provide better correlation with the observed data

    Validation of a new flying quality criterion for the landing task

    Get PDF
    A strong correlation has been found to exist between flight path angle peak overshoot and pilot ratings for the landing task. The use of flightpath overshoot as a flying quality metric for landing is validated by correlation with four different in-flight simulation programs and a ground simulation study. Configurations tested were primarily medium-weight generic transports. As a result of good correlation with this extensive data base, criterion boundaries are proposed for landing based on the flight path peak overshoot metric

    Evaluation of HiMAT aircraft landing approach lateral control gearing using simulation and a visual display

    Get PDF
    The utility of a visual display when studying the influence of changes in lateral stick gearing gains on the Highly Maneuverable Aircraft Technology (HiMAT) vehicle handling qualities during simulated approaches and landings is investigated. The visual display improved the validity of the simulation and provided improved roll response cues for the HiMAT aircraft landing approach. A range of acceptable constant lateral stick gearing gains is found that provides adequate maneuverability and allows for precision moments

    Tibialis posterior in health and disease: a review of structure and function with specific reference to electromyographic studies

    Get PDF
    Tibialis posterior has a vital role during gait as the primary dynamic stabiliser of the medial longitudinal arch; however, the muscle and tendon are prone to dysfunction with several conditions. We present an overview of tibialis posterior muscle and tendon anatomy with images from cadaveric work on fresh frozen limbs and a review of current evidence that define normal and abnormal tibialis posterior muscle activation during gait. A video is available that demonstrates ultrasound guided intra-muscular insertion techniques for tibialis posterior electromyography

    Radiography of the Carpal Scaphoid

    No full text
    corecore