1,051 research outputs found

    Spin-Charge Separation and Kinetic Energy in the t-J Model

    Full text link
    I show that spin-charge separation in 2-D t-J model leads to an increase of kinetic energy. Using a sum rule, I derive an exact expression for the lowest possible KE (E_{bound}) for any state without doubly occupied sites. KE of relevant slave-boson and Schwinger-boson mean-field states -- which exhibit complete spin-charge separation -- are found to be much larger than E_{bound}. Examination of n(k) shows that the large increse in KE is due to excessive depletion of electrons from the bottom of the band (Schwinger boson) and of holes from the top (slave boson). To see whether the excess KE is simply due to poor treatment of the constraints, I solve the constraint problem analytically for the Schwinger boson case in the J = 0 limit. This restores gauge invariance, incorrectly violated in MF theories. The result is a generalized Hartree-Fock state of the Hubbard model, but one that includes spin waves. Even after constraints are imposed correctly, the KE remains much larger than E_{bound}. These results support the notion, advanced earlier [PRB 61, 8663 (2000)] that spin-charge separation in the MF state costs excessive KE, and makes the state unstable toward recombination processes which lead to superconductivity in d = 2 and a Fermi liquid state in higher dimensions.Comment: 13 pages, LateX plus three figures. To appear in Phys Rev B Typos correcte

    Phytochemistry and pharmacology of the genus Drypetes: A review

    Get PDF
    Aims: Traditional medicinal use of species of the genus Drypetes is widespread in the tropical regions. The aim of this review is to systematically appraise the literature available to date on phytochemistry, ethnopharmacology, toxicology and bioactivity (in vitro and in vivo) of crude extracts and purified compounds. Ethnopharmacological relevance: Plants of the genus Drypetes (Putranjivaceae) are used in the Subsaharan African and Asian traditional medicines to treat a multitude of disorders, like dysentery, gonorrhoea, malaria, rheumatism, sinusitis, tumours, as well as for the treatment of wounds, headache, urethral problems, fever in young children, typhoid and several other ailments. Some Drypetes species are used to protect food against pests, as an aphrodisiac, a stimulant/depressant, a rodenticide and a fish poison, against insect bites, to induce conception and for general healing. This review deals with updated information on the ethnobotany, phytochemistry, and biological activities of ethnomedicinally important Drypetes species, in order to provide an input for the future research opportunities. Methods: An extensive review of the literature available in various recognized databases e.g., Google Scholar, PubMed, Science Direct, SciFinder, Web of Science, www.theplantlist.org and www.gbif.org, as well as the Herbier National du Cameroun (Yaoundé) and Botanic Gardens of Limbe databases on the uses and bioactivity of various species of the Drypetes was undertaken. Results: The literature provided information on ethnopharmacological uses of the Subsaharan African and Asian species of the genus Drypetes, e.g., Drypetes aubrévillii, D. capillipes, D. chevalieri, D. gerrardii, D. gossweileri, D. ivorensis, D. klainei, D. natalensis, D. pellegrini (all endemic to Africa) and D. roxburghii (Asian species), for the treatment of multiple disorders. From a total of 19 species, more than 140 compounds including diterpenes, sesquiterpenes, triterpenes (friedelane, oleanane, lupane and hopane-type), flavonoids, lignans, phenylpropanoids and steroids, as well as some thiocyanates, were isolated. Several crude extracts of these plants, and isolated compounds displayed significant analgesic, anthelmintic, antidiabetic, anti-emetic anti-inflammatory, antioxidant, antiparasitic, central nervous system depressant, cytotoxic, and insecticidal activities both in vitro and in vivo. Some toxicities associated with the stem, bark, seed and leaf extracts of D. roxburghii, and the flavonoid, amentoflavone, isolated from the stem extract of D. littoralis as well as D. gerrardii, were confirmed in the animal models and in the rat skeletal myoblast cells assays. As a consequence, traditional medicine from this genus should in future be applied with care. Conclusions: Plants of this genus have offered bioactive samples, both from crude extracts and pure compounds, partly validating their effectivity in traditional medicine. However, most of the available scientific litteratures lacks information on relevant doses, duration of the treatment, storage conditions and positive controls for examining bioefficacy of extract and its active compounds. Additional toxicological studies on the species used in local pharmacopeia are urgently needed to guarantee safe application due to higth toxicity of some crude extracts. Interestingly, this review also reports 10 pimarane dinorditerpenoids structures with the aromatic ring C, isolated from the species collected in Asia Drypetes littoralis (Taiwan), D. perreticulata (China), and in Africa D. gerrardii (Kenya), D. gossweileri (Cameroon). These compounds might turn out to be good candidates for chemotaxonomic markers of the genus

    Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation

    Full text link
    The parametrically driven Ginsburg-Landau equation has well-known stationary solutions -- the so-called Bloch and Neel, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.Comment: 10 pages, 2 figures, to appear in Physical Review

    Temperature dependence of the resistivity in the double-exchange model

    Full text link
    The resistivity around the ferromagnetic transition temperature in the double exchange model is studied by the Schwinger boson approach. The spatial spin correlation responsible for scattering of conduction electrons are taken into account by adopting the memory function formalism. Although the correlation shows a peak lower than the transition temperature, the resistivity in the ferromagnetic state monotonically increases with increasing temperature due to a variation of the electronic state of the conduction electron. In the paramagnetic state, the resistivity is dominated by the short range correlation of scattering and is almost independent of the temperature. It is attributed to a cancellation between the nearest-neighbor spin correlation, the fermion bandwidth, and the fermion kinetic energy. This result implies the importance of the temperature dependence of the electronic states of the conduction electron as well as the localized spin states in both ferromagnetic and paramagnetic phases.Comment: RevTex, 4 pages, 4 PostScript figures, To appear in Phys. Rev.

    The Use of Transdermal Estrogen in Castrate-resistant, Steroid-refractory Prostate Cancer

    Get PDF
    BACKGROUND: Androgen-deprivation therapy is the mainstay of treatment for metastatic prostate cancer. Corticosteroids and estrogens are also useful agents in castration-resistant prostate cancer (CRPC). However, oral estrogens are associated with thromboembolic events, which limits their use, and transdermal estrogens may offer a safer alternative. This study was carried out to determine the safety and effectiveness of transdermal estrogens in CRPC. PATIENTS AND METHODS: Forty-one patients with CRPC and steroid-resistant prostate cancer were eligible for this dose-escalation study of transdermal estradiol. A starting dose of 50 mcg/24 hours was applied and increased if prostate-specific antigen (PSA) rose > 5 ng/mL in steps to 300 mcg/24 hours. The primary endpoint was PSA response, and secondary outcomes included incidence of thromboembolic events and progression-free survival. Patients who progressed were offered diethylstilbestrol. RESULTS: Five (13%) of 40 patients had > 50% PSA reduction for at least 1 month at any transdermal estradiol dose. No venous-thromboembolic events were observed, and responses plateaued at 200 mcg/24 hours. A correlation between PSA response and rising sex hormone binding globulin was seen. Fifty percent of patients subsequently responded to low-dose diethylstilbestrol. CONCLUSION: Transdermal estradiol appears to be a low toxicity treatment option to control CRPC after failure of steroid therapy. Modulation of sex hormone binding globulin by transdermal estradiol may be one mechanism of action of estrogens on CRPC. Oral estrogens remain effective after the use of transdermal estradiol

    Quasiparticles as composite objects in the RVB superconductor

    Full text link
    We study the nature of the superconducting state, the origin of d-wave pairing, and elementary excitations of a resonating valence bond (RVB) superconductor. We show that the phase string formulation of the t-J model leads to confinement of bare spinon and holon excitations in the superconducting state, though the vacuum is described by the RVB state. Nodal quasiparticles are obtained as composite excitations of spinon and holon excitations. The d-wave pairing symmetry is shown to arise from short range antiferromagnetic correlations

    Spiral phase and phase separation of the double exchange model in the large-S limit

    Full text link
    The phase diagram of the double exchange model is studied in the large-S limit at zero temperature in two and three dimensions. We find that the spiral state has lower energy than the canted antiferromagnetic state in the region between the antiferromagnetic phase and the ferromagnetic phase. At small doping, the spiral phase is unstable against phase separation due to its negative compressibility. When the Hund coupling is small, the system separates into spiral regions and antiferromagnetic regions. When the Hund coupling is large, the spiral phase disappears completely and the system separates into ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.

    In-medium two-nucleon properties in high electric fields

    Full text link
    The quantum mechanical two - particle problem is considered in hot dense nuclear matter under the influence of a strong electric field such as the field of the residual nucleus in heavy - ion reactions. A generalized Galitskii-Bethe-Salpeter equation is derived and solved which includes retardation and field effects. Compared with the in-medium properties in the zero-field case, bound states are turned into resonances and the scattering phase shifts are modified. Four effects are observed due to the applied field: (i) A suppression of the Pauli-blocking below nuclear matter densities, (ii) the onset of pairing occurs already at higher temperatures due to the field, (iii) a field dependent finite lifetime of deuterons and (iv) the imaginary part of the quasiparticle self-energy changes its sign for special values of density and temperatures indicating a phase instability. The latter effect may influence the fragmentation processes. The lifetime of deuterons in a strong Coulomb field is given explicitly.Comment: ps file + 7 figures (eps

    Dielectric catastrophe at the magnetic field induced insulator to metal transition in Pr1-xCaxMnO3 (x=0.30, 0.37) crystals

    Full text link
    The dielectric permittivity and resistivity have been measured simultaneously as a function of magnetic field in Pr1-xCaxMnO3 crystals with different doping. A huge increase of dielectric permittivity was detected near percolation threshold. The dielectric and conductive properties are found to be mutually correlated throughout insulator to metal transition evidencing the dielectric catastrophe phenomenon. Data are analyzed in a framework of Maxwell-Garnett theory and the Mott-Hubbard theory attributed to the role of strong Coulomb interactions.Comment: 5 pages, 5 figure

    Mean-Field Description of Phase String Effect in the t−Jt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the t−Jt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure
    • …
    corecore