168 research outputs found

    Climate change-driven losses in ecosystem services of coastal wetlands: A case study in the West coast of Bangladesh

    Get PDF
    © 2018 The Authors Climate change is globally recognized as one of the key drivers of degradation of coastal wetland ecosystems, causing considerable alteration of services provided by these habitats. Quantifying the physical impacts of climate change on these services is therefore of utmost importance. Yet, practical work in this field is fragmented and scarce in current literature, especially in developing countries which are likely to suffer most from the adverse climate change impacts. Using a coherent scenario-based approach that combines assessment of physical impacts with economic valuation techniques, here we quantify potential climate change driven losses in the value of wetland ecosystems services due to relative sea-level rise (RSLR)-induced inundation in the vulnerable Western coastal area of Bangladesh in 2100. The results show a small inundation area in 2100 under the three IPCC climate scenarios of RCP2.6 (with 0.25 m of RSLR), RCP6.0 (with 1.18 m of RSLR), and RCP8.5 (with 1.77 m of RSLR) for the coastal wetland ecosystems including the Sundarbans mangrove forest, neritic system and aquaculture ponds. In all scenarios, RSLR will drive a loss in the total value of ecosystem services such as provision of raw materials, and food provision, ranging from US01milliontoUS 0–1 million to US 16.5–20 million, respectively. The outcomes of this study reveal that RSLR-induced inundation on its own, is unlikely to be a major threat to the wetland ecosystems in Western coast of Bangladesh. This would suggest that other climate change impacts such as coastal erosion, increase in frequency of cyclone events, and sea temperature rise might be the likely primary drivers of change in the value of wetland ecosystems services in this area

    Medicinal formulations of a Kanda tribal healer – a tribe on the verge of disappearance in Bangladesh

    Get PDF
    The Kanda tribe is one of the lesser known small tribes of Bangladesh with an estimated population of about 1700 people (according to them), and on the verge of extinction as a separate entity. To some extent, they have assimilated with the surrounding mainstream Bengali-speaking population, but they still maintain their cultural practices including traditional medicinal practices, for which they have their own tribal healers. Nothing at all has been documented thus far about their traditional medicinal practices and formulations, which are on the verge of disappearance. The Kanda tribe can be found only in scattered tea gardens of Sreemangal in Sylhet district of Bangladesh; dispersion of the tribe into small separated communities isalso contributing to the fast losing of traditional medicinal practices. The objective of the present study was to conduct an ethnomedicinal survey among the traditional healers of the Kanda tribe (in fact, only one such healer was found after extensive searches). Information was collected from the healer with the help of a semi-structured questionnaire and the guided field-walk method. A total of 24 formulations were obtained from the healer containing 34 plants including two plants, which could not beidentified. Besides medicinal plants, the Kanda healer also used the body hairs of the Asiatic black bear (Ursus thibetanus) and bats (Pteropus giganteus giganteus) in one of his formulation for treatment of fever with shivering. The ailments treated by the Kanda healer were fairly common ailments like cuts and wounds, skin diseases, helminthiasis, fever,  respiratory problems (coughs, asthma), gastrointestinal disorders (stomach pain, constipation, diarrhea), burning sensations during urination, various types of pain (headache, body ache, toothache, ear ache), conjunctivitis, poisonous snake, insect or reptile bites, jaundice, andbone fractures. A number of important drugs in allopathic medicine like quinine, artemisinin, and morphine (to name only a few) have been discovered from observing indigenous medicinal practices. From that view point, the formulations used by the Kanda healer merit scientific studies for their potential in the discovery of cheap and effective new drugs. Scientific validation of the medicinal formulations of the Kanda healer can also be effective for treatment of ailments among this tribe, which does not have or does not want to have any contact with modern medicine

    AMP-activated protein kinase is a key regulator of acute neurovascular permeability

    Get PDF
    Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability and signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+ Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS), which in turn increased VE-cadherin phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinase and HSP27, indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists/agonists and siRNA, the ex-vivo retina model constitutes a reliable tool to identify and study regulators and mechanism of acute neurovascular permeability

    The sedimentology of river confluences

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Channel confluences are key nodes within large river networks, and yet surprisingly little is known about their spatial and temporal evolution. Moreover, because confluences are associated with vertical scour that typically extends to several times the mean channel depth, the deposits associated with such scours should have a high preservation potential within the rock record. Paradoxically, such scours are rarely observed, and their preservation and sedimentological interpretation are poorly understood. The present study details results from a physically‐based morphodynamic model that is applied to simulate the evolution and alluvial architecture of large river junctions. Boundary conditions within the model were defined to approximate the junction of the Ganges and Jamuna rivers, Bangladesh, with the model output being supplemented by geophysical datasets collected at this junction. The numerical simulations reveal several distinct styles of sedimentary fill that are related to the morphodynamic behaviour of bars, confluence scour downstream of braid bars, bend scour and major junction scour. Comparison with existing, largely qualitative, conceptual models reveals that none of these can be applied simply, although elements of each are evident in the deposits generated by the numerical simulation and observed in the geophysical data. The characteristics of the simulated scour deposits are found to vary according to the degree of reworking caused by channel migration, a factor not considered adequately in current conceptual models of confluence sedimentology. The alluvial architecture of major junction scours is thus characterized by the prevalence of erosion surfaces in conjunction with the thickest depositional sets. Confluence scour downstream of braid bar and bend scour sites may preserve some large individual sets, but these locations are typically characterized by lower average set thickness compared to major junction scour and by a lack of large‐scale erosional surfaces. Areas of deposition not related to any of the specific scour types highlighted above record the thinnest depositional sets. This variety in the alluvial architecture of scours may go some way towards explaining the paradox of ancient junction scours, that while abundant large scours are likely in the rock record, they have been reported rarely. The present results outline the likely range of confluence sedimentology and will serve as a new tool for recognizing and interpreting these deposits in the ancient fluvial record.This work was funded by a UK Natural Environment Research Council award to Sambrook Smith (NE/I023228/1), Bull (NE/I023864/1) and Nicholas (NE/I023120/1)

    The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.River channel confluences are widely acknowledged as important geomorphological nodes that control the downstream routing of water and sediment, and which are locations for the preservation of thick fluvial deposits overlying a basal scour. Despite their importance, there has been little study of the stratigraphic characteristics of river junctions, or the role of confluence morphodynamics in influencing stratigraphic character and preservation potential. As a result, although it is known that confluences can migrate through time, models of confluence geomorphology and sedimentology are usually presented from the perspective that the confluence remains at a fixed location. This is problematic for a number of reasons, not least of which is the continuing debate over whether it is possible to discriminate between scour that has been generated by autocyclic processes (such as confluence scour) and that driven by allocyclic controls (such as sea-level change). This paper investigates the spatial mobility of river confluences by using the 40-year record of Landsat Imagery to elucidate the styles, rates of change and areal extent over which large river confluence scours may migrate. On the basis of these observations, a new classification of the types of confluence scour is proposed and applied to the Amazon and Ganges-Brahmaputra-Meghna (GBM) basins. This analysis demonstrates that the drivers of confluence mobility are broadly the same as those that drive channel change more generally. Thus in the GBM basin, a high sediment supply, large variability in monsoonal driven discharge and easily erodible bank materials result in a catchment where over 80% of large confluences are mobile over this 40-year window; conversely this figure is < 40% for the Amazon basin. These results highlight that: i) the potential areal extent of confluence scours is much greater than previously assumed, with the location of some confluences on the Jamuna (Brahmaputra) River migrating over a distance of 20 times the tributary channel width; ii) extensive migration in the confluence location is more common than currently assumed, and iii) confluence mobility is often tied to the lithological and hydrological characteristics of the drainage basins that determine sediment yield.This work was funded by NERC grant NE/I023228/1 to Sambrook Smith, Bull, Nicholas and Best

    Impacts of natural and human drivers on the multi-decadal morphological evolution of tidally-influenced deltas

    Get PDF
    The world's deltas are at risk of being drowned due to rising relative sea levels as a result of climate change, decreasing supplies of fluvial sediment, and human responses to these changes. This paper analyses how delta morphology evolves over multi-decadal timescales under environmental change using a process-based model. Model simulations over 10^2 years are used to explore the influence of three key classes of environmental change, both individually and in combination: (i) varying combinations of fluvial water and sediment discharges; (ii) varying rates of relative sea-level rise; and (iii) selected human interventions within the delta, comprising polder-dykes and cross-dams. The results indicate that tidal asymmetry and rate of sediment supply together affect residual flows and delta morphodynamics (indicated by sub-aerial delta area, rates of progradation and aggradation). When individual drivers of change act in combination, delta building processes such as the distribution of sediment flux, aggradation, and progradation are disrupted by the presence of isolated polder-dykes or cross-dams. This suggests that such interventions, unless undertaken at a very large scale, can lead to unsustainable delta building processes. Our findings can inform management choices in real-world tidally-influenced deltas, while the methodology can provide insights into other dynamic morphological systems

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) as a therapeutic target to prevent retinal vasopermeability during diabetes

    Get PDF
    Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents

    AMP-activated protein kinase is a key regulator of acute neurovascular permeability

    Get PDF
    Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability, signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+. Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS, also known as NOS3), which in turn increased VE-cadherin (CDH5) phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinases (hereafter p38) and HSP27 (HSPB1), indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists and agonists, as well as siRNA, the ex vivo retina model constitutes a reliable tool to identify and study regulators and mechanisms of acute neurovascular permeability

    Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae)

    Get PDF
    Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh. This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone (1), 3,3',4',5',5,6,7,8-octamethoxyflavone (2, exoticin), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3) and (3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4) from the leaves of N. plumbaginifolia. All these flavonoids are rather rare natural products, and only found in a few genera, e.g., Polygonum and Murraya. The structures of the isolated flavonoids were elucidated by comprehensive spectroscopic analyses, e.g., UV, 1H, 13C NMR, DEPT, HSQC, HMBC and MS
    corecore