1,773 research outputs found

    Dimension scaling effects on the yield sensitivity of HEMT digital circuits

    Get PDF
    In our previous works, using a graphical tool, yield factor histograms, we studied the yield sensitivity of High Electron Mobility Transistors (HEMT) and HEMT circuit performance with the variation of process parameters. This work studies the scaling effects of process parameters on yield sensitivity of HEMT digital circuits. The results from two HEMT circuits are presented

    DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    Get PDF
    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented

    Canted Ferromagnetism in Double Exchange Model with on-site Coulomb Repulsion

    Full text link
    The double exchange model with on-site Coulomb repulsion is considered. Schwinger-bosons representation of the localized spins is used and two spin-singlet Fermion operators are introduced. In terms of the new Fermi fields the on-site Hund's interaction is in a diagonal form and the true magnons of the system are identified. The singlet fermions can be understood as electrons dressed by a cloud of repeatedly emitted and reabsorbed magnons. Rewritten in terms of Schwinger-bosons and spin-singlet fermions the theory is U(1) gauge invariant. We show that spontaneous breakdown of the gauge symmetry leads to \emph{\textbf{canted ferromagnetism with on-site spins of localized and delocalized electrons misaligned}}. On-site canted phase emerges in double exchange model when Coulomb repulsion is large enough. The quantum phase transition between ferromagnetism and canted phase is studied varying the Coulomb repulsion for different values of parameters in the theory such as Hund's coupling and chemical potential.Comment: 8 pages, 6 figure

    Chemical Composition, Some Allelopathic Aspects, Free-Radical-Scavenging Property and Antifungal Activity of the Volatile Oil of the Flowering Tops of Leucanthemum vulgare Lam.

    Get PDF
    Hydrodistillation of the ground flowering tops of Leucanthemum vulgare (Asteraceae), collected from Heyran (Ardabil Province, Iran), afforded a greenish yellow oil (yield 0.15%, v/w), which was analyzed by the GC-MS and the GC-FID. The volatile oil comprised 47 compounds representing 90.3% of the oil. Caryophyllene oxide (21.2%), aromadendrene oxide (13.7%), cis-β-farnesene (6.5%), 1-octen-3-yl-acetate (5.6%) and trans-caryophyllene (4.9%) were the major compounds. The volatile oil composition of L. vulgare collected from Iran (present study) was significantly different from that collected from elsewhere, indicating two possible chemotypes. The volatile oil showed free-radical-scavenging, antifungal and allelopathic effects

    Polypropylene fibre reinforced cement mortars containing rice husk ash and nano-alumina

    Get PDF
    This paper presents the effects of incorporating two supplementary cementitious materials: rice husk ash (RHA) and nano-alumina (NA) in polypropylene fiber (PPF) reinforced cement mortars. RHA is an agricultural waste material and thus recycling of this material has substantial economic and environmental benefits. Compressive strength, flexural strength, water absorption and drying shrinkage of the hardened composites were investigated. The interfacial transition zone and the microstructures were studied by using scanning electron micrograph (SEM) and X-ray diffraction (XRD) analysis. A slight increase in compressive strength of mortar was observed by using up to 10 wt% of RHA as a replacement of cement. However, addition of nano-alumina helped the compressive strength of mortar remain approximately equal to that of the control specimen even when 20 or 30 wt% RHA was used. Addition of polypropylene fibers resulted in significant increase in the flexural strength of the mortar specimens. It was also observed that NA and PPF could reduce water absorption by pore blocking effect. The positive interactions between polypropylene fibers and RHA resulted in the lowest drying shrinkage of the fibrous mortar containing RHA. XRD analysis showed that the intensity of Alite and Belite phases decreased and new peak of portlandite produced with the addition of NA. The addition of RHA enhanced the late strength of the cement composites. Consequently, the combined addition of RHA, NA and PPF has resulted in increasing of flexural strength and reduction in both water absorption and drying shrinkage of mortars

    AMP-activated protein kinase is a key regulator of acute neurovascular permeability

    Get PDF
    Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability and signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+ Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS), which in turn increased VE-cadherin phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinase and HSP27, indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists/agonists and siRNA, the ex-vivo retina model constitutes a reliable tool to identify and study regulators and mechanism of acute neurovascular permeability

    Numerical Simulation of the Performance Characteristics of the Hybrid Closed Circuit Cooling Tower

    Get PDF
    The performance characteristics of the Hybrid Closed Circuit Cooling Tower (HCCCT) have been investigated applying computational fluid dynamics (CFD). Widely reported CFD techniques are applied to simulate the air-water two phase flow inside the HCCCT. The pressure drop and the cooling capacity were investigated from several perspectives. Three different transverse pitches were tested and found that a pitch of 45 mm had lower pressure drop. The CFD simulation indicated that when air is supplied from the side wall of the HCCCT, the pressure drop can be over predicted and the cooling capacity can be under predicted mainly due to the non-uniform air flow distribution across the coil bank. The cooling capacity in wet mode have been calculated with respect to wet-bulb temperature (WBT) and cooling water to air mass flow rates for different spray water volume flow rates and the results were compared to the experimental measurement and found to conform well for the air supply from the bottom end. The differences of the cooling capacity and pressure drop in between the CFD simulation and experimental measurement in hybrid mode were less than 5 % and 7 % respectively for the uniform air flow distribution

    Constitutive expression of NF-κB inducing kinase in regulatory T cells impairs suppressive function and promotes instability and pro-inflammatory cytokine production

    Get PDF
    CD4+Foxp3+ regulatory T cells (Tregs) are indispensable negative regulators of immune responses. To understand Treg biology in health and disease, it is critical to elucidate factors that affect Treg homeostasis and suppressive function. Tregs express several costimulatory TNF receptor family members that activate non-canonical NF-κB via accumulation of NF-κB inducing kinase (NIK). We previously showed that constitutive NIK expression in all T cells causes fatal multi-organ autoimmunity associated with hyperactive conventional T cell responses and poor Treg-mediated suppression. Here, we show that constitutive NIK expression that is restricted to Tregs via a Cre-inducible transgene causes an autoimmune syndrome. We found that constitutive NIK expression decreased expression of numerous Treg signature genes and microRNAs involved in Treg homeostasis and suppressive phenotype. NIK transgenic Tregs competed poorly with WT Tregs in vivo and produced proinflammatory cytokines upon stimulation. Lineage tracing experiments revealed accumulation of ex- Foxp3+ T cells in mice expressing NIK constitutively in Tregs, and these former Tregs produced copious IFNγ and IL-2. Our data indicate that under inflammatory conditions in which NIK is activated, Tregs may lose suppressive function and may actively contribute to inflammation

    AMP-activated protein kinase is a key regulator of acute neurovascular permeability

    Get PDF
    Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability and signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+ Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS), which in turn increased VE-cadherin phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinase and HSP27, indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists/agonists and siRNA, the ex-vivo retina model constitutes a reliable tool to identify and study regulators and mechanism of acute neurovascular permeability
    corecore