2,211 research outputs found
The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2
Coronavirus disease 2019 (COVID-19) continues to exact a devastating global toll. Ascertaining the factors underlying differential susceptibility and prognosis following viral exposure is critical to improving public health responses. We propose that gut microbes may contribute to variation in COVID-19 outcomes. We synthesise evidence for gut microbial contributions to immunity and inflammation, and associations with demographic factors affecting disease severity. We suggest mechanisms potentially underlying microbially mediated differential susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These include gut microbiome-mediated priming of host inflammatory responses and regulation of endocrine signalling, with consequences for the cellular features exploited by SARS-CoV-2 virions. We argue that considering gut microbiome-mediated mechanisms may offer a lens for appreciating differential susceptibility to SARS-CoV-2, potentially contributing to clinical and epidemiological approaches to understanding and managing COVID-19
Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila
Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells
Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Sr-Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India
Sr–Nd isotope data are reported for the early Precambrian sub-alkaline mafic igneous rocks of the southern Bastar craton, central India. These mafic rocks are mostly dykes but there are a few volcanic exposures. Field relationships together with the petrological and geochemical characteristics of these mafic dykes divide them into two groups; Meso-Neoarchaean sub-alkaline mafic dykes (BD1) and Paleoproterozoic (1.88 Ga) sub-alkaline mafic dykes (BD2). The mafic volcanics are Neoarchaean in age and have very close geochemical relationships with the BD1 type. The two groups have distinctly different concentrations of high-field strength (HFSE) and rare earth elements (REE). The BD2 dykes have higher concentrations of HFSE and REE than the BD1 dykes and associated volcanics and both groups have very distinctive petrogenetic histories. These rocks display a limited range of initial 143Nd/144Nd but a wide range of apparent initial 87Sr/86Sr. Initial 143Nd/144Nd values in the BD1 dykes and associated volcanics vary between 0.509149 and 0.509466 and in the BD2 dykes the variation is between 0.510303 and 0.510511. All samples have positive εNd values the BD1 dykes and associated volcanics have εNd values between +0.3 and +6.5 and the BD2 dykes between +1.9 to +6.0. Trace element and Nd isotope data do not suggest severe crustal contamination during the emplacement of the studied rocks. The positive εNd values suggest their derivation from a depleted mantle source. Overlapping positive εNd values suggest that a similar mantle source tapped by variable melt fractions at different times was responsible for the genesis of BD1 (and associated volcanics) and BD2 mafic dykes. The Rb–Sr system is susceptible to alteration and resetting during post-magmatic alteration and metamorphism. Many of the samples studied have anomalous apparent initial 87Sr/86Sr suggesting post-magmatic changes of the Rb–Sr system which severely restricts the use of Rb–Sr for petrogenetic interpretation
Sibling interaction as a facilitator for talent development in sport
While current research has begun to address parental influences on talent development in sport, sibling interaction remains relatively under-examined. Therefore, this study aimed to explore the underpinning mechanisms through which sibling interaction impacts on talent development. Retrospective phenomenological interviews were conducted with four sets of siblings (N = 9), where at least one sibling had competed to an elite level. Findings revealed several higher-order themes that impacted positively on the talented athletes’ development: regularity of interaction in sport, emotional interpersonal skills, rivalry, resilience, co-operation and separation. Separation appeared as the athlete reached elite status, suggesting that these former mechanisms primarily impact during the development phase. Such findings support and extend the sibling, elite sport and talent development literature and provide valuable insight for both practitioners and academics. Importantly, coaches should consider a sibling’s role as an important mechanism outside of the formal coaching structure for talent development
An open source infrastructure for managing knowledge and finding potential collaborators in a domain-specific subset of PubMed, with an example from human genome epidemiology
<p>Abstract</p> <p>Background</p> <p>Identifying relevant research in an ever-growing body of published literature is becoming increasingly difficult. Establishing domain-specific knowledge bases may be a more effective and efficient way to manage and query information within specific biomedical fields. Adopting controlled vocabulary is a critical step toward data integration and interoperability in any information system. We present an open source infrastructure that provides a powerful capacity for managing and mining data within a domain-specific knowledge base. As a practical application of our infrastructure, we presented two applications – Literature Finder and Investigator Browser – as well as a tool set for automating the data curating process for the human genome published literature database. The design of this infrastructure makes the system potentially extensible to other data sources.</p> <p>Results</p> <p>Information retrieval and usability tests demonstrated that the system had high rates of recall and precision, 90% and 93% respectively. The system was easy to learn, easy to use, reasonably speedy and effective.</p> <p>Conclusion</p> <p>The open source system infrastructure presented in this paper provides a novel approach to managing and querying information and knowledge from domain-specific PubMed data. Using the controlled vocabulary UMLS enhanced data integration and interoperability and the extensibility of the system. In addition, by using MVC-based design and Java as a platform-independent programming language, this system provides a potential infrastructure for any domain-specific knowledge base in the biomedical field.</p
Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1β and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death
- …