1,247 research outputs found

    Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    Get PDF
    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the released heat of adsorption heats up the air passing through the reactor. The hot outflow air is led to an air-to-water heat exchanger integrated in a water tank and heats up the water. The residual heat in the exhaust air is used to preheat the reactor inflow in an air-to-air heat exchanger. The temperatures of all system components are measured, and the thermal powers and heat losses are calculated. Experiments are performed in the system with and without using the heat recovery, and improvement in performance of the heat storage system is investigated

    Cascaded plane wave ultrasound for blood velocity vector imaging in the carotid artery

    Get PDF
    Cascaded dual-polarity waves (CDWs) imaging increases the signal-to-noise ratio (SNR) by transmitting trains of pulses with different polarity order, which are combined via decoding afterward. This potentially enables velocity vector imaging (VVI) in more challenging SNR conditions. However, the motion of blood in between the trains will influence the decoding process. In this work, the use of CDW for blood VVI is evaluated for the first time. Dual-angle, plane wave (PW) ultrasound, CDW-coded, and noncoded conventional PW (cPW), was acquired using a 7.8 MHz linear array at a pulse repetition frequency (PRF) of 8 kHz. CDW-channel data were decoded prior to beamforming and cross correlation-based compound speckle tracking for VVI. Simulations of single scatterer motion show a high dependence of amplitude gain on the velocity magnitude and direction for CDW-coded transmissions. Both simulations and experiments of parabolic flow show increased SNRs for CDW imaging. As a result, CDW outperforms cPW VVI in low SNR conditions, based on both bias and standard deviation (SD). Quantitative linear regression and qualitative analyses of simulated realistic carotid artery blood flow show a similar performance of CDW and cPW for high SNR (14 dB) conditions. However, reducing the SNR to 6 dB, results in a root-mean-squared error 2.7× larger for cPW versus CDW, and an R2 of 0.4 versus 0.9. Initial in vivo evaluation of a healthy carotid artery shows increased SNR and more reliable velocity estimates for CDW versus cPW. In conclusion, this work demonstrates that CDW imaging facilitates improved VVI of deeper located carotid arteries.</p

    To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria

    Get PDF
    The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TINO3 and KNO3 stimulated the Tl+-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (Delta Psi(mito)), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl+-induced MPTP in the inner membrane of Ca2+-loaded rat liver mitochondria. Using the Tl+-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds. (C) 2016 Elsevier Ltd. All rights reserved.Peer reviewe

    The Short-Term Opening of Cyclosporin A-Independent Palmitate/Sr2+-Induced Pore Can Underlie Ion Efflux in the Oscillatory Mode of Functioning of Rat Liver Mitochondria

    Get PDF
    Mitochondria are capable of synchronized oscillations in many variables, but the underlying mechanisms are still unclear. In this study, we demonstrated that rat liver mitochondria, when exposed to a pulse of Sr2+ ions in the presence of valinomycin (a potassium ionophore) and cyclosporin A (a specific inhibitor of the permeability transition pore complex) under hypotonia, showed prolonged oscillations in K+ and Sr2+ fluxes, membrane potential, pH, matrix volume, rates of oxygen consumption and H2O2 formation. The dynamic changes in the rate of H2O2 production were in a reciprocal relationship with the respiration rate and in a direct relationship with the mitochondrial membrane potential and other indicators studied. The pre-incubation of mitochondria with Ca2+(Sr2+)-dependent phospholipase A(2) inhibitors considerably suppressed the accumulation of free fatty acids, including palmitic and stearic acids, and all spontaneous Sr2+-induced cyclic changes. These data suggest that the mechanism of ion efflux from mitochondria is related to the opening of short-living pores, which can be caused by the formation of complexes between Sr2+(Ca2+) and endogenous long-chain saturated fatty acids (mainly, palmitic acid) that accumulate due to the activation of phospholipase A(2) by the ions. A possible role for transient palmitate/Ca2+(Sr2+)-induced pores in the maintenance of ion homeostasis and the prevention of calcium overload in mitochondria under pathophysiological conditions is discussed.Peer reviewe

    The Short-Term Opening of Cyclosporin A-Independent Palmitate/Sr2+-Induced Pore Can Underlie Ion Efflux in the Oscillatory Mode of Functioning of Rat Liver Mitochondria

    Get PDF
    Mitochondria are capable of synchronized oscillations in many variables, but the underlying mechanisms are still unclear. In this study, we demonstrated that rat liver mitochondria, when exposed to a pulse of Sr2+ ions in the presence of valinomycin (a potassium ionophore) and cyclosporin A (a specific inhibitor of the permeability transition pore complex) under hypotonia, showed prolonged oscillations in K+ and Sr2+ fluxes, membrane potential, pH, matrix volume, rates of oxygen consumption and H2O2 formation. The dynamic changes in the rate of H2O2 production were in a reciprocal relationship with the respiration rate and in a direct relationship with the mitochondrial membrane potential and other indicators studied. The pre-incubation of mitochondria with Ca2+(Sr2+)-dependent phospholipase A2 inhibitors considerably suppressed the accumulation of free fatty acids, including palmitic and stearic acids, and all spontaneous Sr2+-induced cyclic changes. These data suggest that the mechanism of ion efflux from mitochondria is related to the opening of short-living pores, which can be caused by the formation of complexes between Sr2+(Ca2+) and endogenous long-chain saturated fatty acids (mainly, palmitic acid) that accumulate due to the activation of phospholipase A2 by the ions. A possible role for transient palmitate/Ca2+(Sr2+)-induced pores in the maintenance of ion homeostasis and the prevention of calcium overload in mitochondria under pathophysiological conditions is discussed

    Hypoxia induces no change in cutaneous thresholds for warmth and cold sensation

    Get PDF
    Hypoxia can affect perception of temperature stimuli by impeding thermoregulation at a neural level. Whether this impact on the thermoregulatory response is solely due to affected thermoregulation is not clear, since reaction time may also be affected by hypoxia. Therefore, we studied the effect of hypoxia on thermal perception thresholds for warmth and cold. Thermal perception thresholds were determined in 11 healthy overweight adult males using two methods for small nerve fibre functioning: a reaction-time inclusive method of limits (MLI) and a reaction time exclusive method of levels (MLE). The subjects were measured under normoxic and hypoxic conditions using a cross-over design. Before the thermal threshold tests under hypoxic conditions were conducted, the subjects were acclimatized by staying 14 days overnight (8 h) in a hypoxic tent system (Colorado Altitude Training: 4,000 m). For normoxic measurements the same subjects were not acclimatized, but were used to sleep in the same tent system. Measurements were performed in the early morning in the tent. Normoxic MLI cold sensation threshold decreased significantly from 30.3 ± 0.4 (mean ± SD) to 29.9 ± 0.7°C when exposed to hypoxia (P < 0.05). Similarly, mean normoxic MLI warm sensation threshold increased from 34.0 ± 0.9 to 34.5 ± 1.1°C (P < 0.05). MLE measured threshold for cutaneous cold sensation was 31.4 ± 0.4 and 31.2 ± 0.9°C under respectively normoxic and hypoxic conditions (P > 0.05). Neither was there a significant change in MLE warm threshold comparing normoxic (32.8 ± 0.9°C) with hypoxic condition (32.9 ± 1.0°C) (P > 0.05). Exposure to normobaric hypoxia induces slowing of neural activity in the sensor-to-effector pathway and does not affect cutaneous sensation threshold for either warmth or cold detection
    • …
    corecore