14 research outputs found

    Quantification of Proteins and Cells: Luminometric Nonspecific Particle-Based Methods

    Get PDF
    New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.Siirretty Doriast

    Lanthanide Label Array Method for Identification and Adulteration of Honey and Cacao

    No full text
    A generic, cost-effective, and simple method has been developed to fingerprint liquids to differentiate food brands and ingredients. The method is based on a label array using nonspecific long lifetime unstable luminescent lanthanide labels. The interaction between the liquid sample and the label is typically detrimental to the luminescence of the unstable chelate leading to a sample-dependent luminescence-intensity array. The label-array method is a unique approach as the array of unstable chelates is extremely inexpensive to produce and possesses high sensitivity due to spectral as well as unstable structural properties of the lanthanide label. The global method has been applied to distinguish commercial honey and cacao brands to demonstrate its feasibility as honey and cacao are among the most adulterated food products

    Method for Estimation of Protein Isoelectric Point

    No full text
    Adsorption of sample protein to Eu<sup>3+</sup> chelate-labeled nanoparticles is the basis of the developed noncompetitive and homogeneous method for the estimation of the protein isoelectric point (pI). The lanthanide ion of the nanoparticle surface-conjugated Eu<sup>3+</sup> chelate is dissociated at a low pH, therefore decreasing the luminescence signal. A nanoparticle-adsorbed sample protein prevents the dissociation of the chelate, leading to a high luminescence signal. The adsorption efficiency of the sample protein is reduced above the isoelectric point due to the decreased electrostatic attraction between the negatively charged protein and the negatively charged particle. Four proteins with isoelectric points ranging from ∼5 to 9 were tested to show the performance of the method. These pI values measured with the developed method were close to the theoretical and experimental literature values. The method is sensitive and requires a low analyte concentration of submilligrams per liter, which is nearly 10000 times lower than the concentration required for the traditional isoelectric focusing. Moreover, the method is significantly faster and simpler than the existing methods, as a ready-to-go assay was prepared for the microtiter plate format. This mix-and-measure concept is a highly attractive alternative for routine laboratory work

    Luminometric Label Array for Counting and Differentiation of Bacteria

    No full text
    Methods for simple and fast detection and differentiation of bacterial species are required, for instance, in medicine, water quality monitoring, and the food industry. Here, we have developed a novel label array method for the counting and differentiation of bacterial species. This method is based on the nonspecific interactions of multiple unstable lanthanide chelates and selected chemicals within the sample leading to a luminescence signal profile that is unique to the bacterial species. It is simple, cost-effective, and/or user-friendly compared to many existing methods, such as plate counts on selective media, automatic (hemocytometer-based) cell counters, flow cytometry, and polymerase chain reaction (PCR)-based methods for identification. The performance of the method was demonstrated with nine single strains of bacteria in pure culture. The limit of detection for counting was below 1000 bacteria per mL, with an average coefficient of variation of 10% achieved with the developed label array. A predictive model was trained with the measured luminescence signals and its ability to differentiate all tested bacterial species from each other, including members of the same genus Bacillus licheniformis and Bacillus subtilis, was confirmed via leave-one-out cross-validation. The suitability of the method for analysis of mixtures of bacterial species was shown with ternary mixtures of Bacillus licheniformis, Escherichia coli JM109, and Lactobacillus reuteri ATCC PTA 4659. The potential future application of the method could be monitoring for contamination in pure cultures; analysis of mixed bacterial cultures, where examining one species in the presence of another could inform industrial microbial processes; and the analysis of bacterial biofilms, where nonspecific methods based on physical and chemical characteristics are required instead of methods specific to individual bacterial species

    Rapid detection of trace amounts of surfactants using nanoparticles in fluorometric assays

    No full text
    Rapid microtiter assays that utilize the time-resolved fluorescenceresonance energy transfer or quenching of dye-labeled proteinsadsorbed onto the surfaces of polystyrene or maghemite nanoparticleshave been developed for the detection and quantification oftrace amounts of surfactants at concentrations down to 10 nM.authorCount :7</p

    Simple Nanoparticle-Based Luminometric Method for Molecular Weight Determination of Polymeric Compounds

    No full text
    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu­(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes

    Sensitive Luminometric Method for Protein Quantification in Bacterial Cell Lysate Based on Particle Adsorption and Dissociation of Chelated Europium

    No full text
    A sensitive and rapid assay for the quantification of proteins, based on sample protein adsorption to Eu<sup>3+</sup>-chelate-labeled nanoparticles, was developed. The lanthanide ion of the surface-conjugated Eu<sup>3+</sup> chelate is dissociated at a low pH, decreasing the luminescence signal. The increased concentration of the sample protein prevents dissociation of the chelate, leading to a high luminescence signal due to the nanoparticle-bound protein. The assay sensitivity for the quantification of proteins was 130 pg for bovine serum albumin (BSA), which is an improvement of nearly 100-fold from the most sensitive commercial methods. The average coefficient of variation for the assay of BSA was 8%. The protein-to-protein variability was sufficiently low; the signal values varied within a 28% coefficient of variation for nine different proteins. The developed method is relatively insensitive to the presence of contaminants, such as nonionic detergents commonly found in biological samples. The existing methods tested for the total protein quantification failed to measure protein concentration in the presence of bacterial cell lysate. The developed method quantified protein also in samples containing insoluble cell components reducing the need for additional centrifugal assay steps and making the concept highly attractive for routine laboratory work
    corecore